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 The paper has given a clear opinion on the progress of environmental protection and 
sustainability in the Nigerian context. The environmental regulations scenario in the country 
is marred by malpractices and corruption more stringent policy enforcement will help in the 
achievement of environmental protection.  This paper deals with a specialized method of 
approximating the sum of an infinite series containing positive terms which are 
monotonically decreasing. The analysis has been done by taking some references done by 
the great mathematician Leonhard Euler with some special examples. Consequently, we 
have established a relation to estimate the sum of convergent infinite series. 
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1. INTRODUCTION  

In the 17th and 18th century many contributions have 
been done in the direction of infinite series. The major 
contributions is due to the great mathematician Leonhard Euler 
(1707-1783) [Linda Becerra and et al.,2008]. Out of his major 
works finding Euler numbers and zeta functions are of very 
genius. Moreover, he attempted to find the sum of different 
types of infinite series. The classical concept of convergent of 
infinite series was put on reasonable foundation with the 
contribution of Cauchy monumental work and Abel’s research 
on the binomial series. A precise definition for the concept of a 
convergent series was introduced at the beginning of the 19th 
century by Augstin Cauchy (1789-1857) and Niles Henrik Abel 
(1802-1829). Depending upon Euler’s study it has already been 
established that a standard method of finding the sum of 
infinite series is to find the partial sum and to evaluate its limit. 
The concept of infinite sum of positive terms is mysterious and 
very interesting. Pietro Mengoli (1626-1686) used infinite 
series to good effect in Novae quadraturaearithmeticae, sue de 
additionefractionum published in Bologna in 1650, developing 
ideas which had first been investigated by Cataldi (1548-1626). 
He begins with the summation of geometric series and he 
shows that the harmonic series does not converge. He became 
the first person to prove that it was possible for a series whose 
terms tend to zero to be made larger than any given number. If 
the series is very slowly convergent and it is difficult to find the 
partial sum that converges to a limit then we find partial sum Sn 
by direct addition of n terms or by any existing methods in 
which we add the remainder Rn for the remaining terms. Even 
then to minimize the errors in our estimated sum, the direct 
addition of many more terms is needed which is also a tedious 
task. That is why many mathematicians have attempted to 
transform the series in different forms. Euler’s, Kummer’s and 
Markoff’s transformations are ingenious method in this field 
[Becerra et al., 2008; Stanattis,2009; Pfaff, 2007]. Many of the 
infinite series were already studied by many earlier 
mathematicians but Euler established many ideas of finding the 
sum of infinite series of positive terms by publishing some 
papers in 1735 and 1740 [Gautschi, 2008]. Euler transformed 
the infinite series 
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 For it he used an improper integral given by 
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Our concern, now, is to find the sum of infinite series of 
positive terms with reference to Euler’s finding.        

2. PRELIMINARIES
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the sum S if 
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n 
lim exists where {Sn} is the sequence of 

partial sums. If the sequence of partial sums has no limit then 
the series is said to be divergent [Knoop,1990]. 

Basel Problem- Euler’s an Attempt 

The Basel problem is to find the sum of series
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Of course, one can use the calculator to estimate the sum. 
Adding up 10 terms gives 1.55 but it doesn’t tell us much about 
the whole sum. If we add up to 200 terms then the correct two 
decimal approximations is 1.64. In other hands, the harmonic 
series which has an infinite sum gives total sum less than 6 
though we take 200 terms. For these reasons we   can say that 
the direct calculation is not so fruitful. So alternative methods 
are needed to make accurate estimates of the sum other than 
direct calculations. Euler worked on such infinite series. By 
adding the first fewer and 100 terms he claimed that the sum of 
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 is nearest about 1.54977 (10 terms) and is 

nearest about 1.63498 (100 terms). By these sums it is 
concluded that the sum of these series converges very slowly. 
In 1731 Euler published a paper in which he found a way to 
improve dramatically such numerical approximations. This 
discovery is assumed as a remarkable work in its vision and 
fearless in its manipulation. The symbols he used were truly 
ingenious [Erdos et al., 1983]. In various ways Euler attempted 
the Bassel problem. One of the techniques he used is discussed 
as below. He used the improper integral  
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    It is also true that  
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By using (2.5) in (2.4) it is obtained that 
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Using (2.3), it is obtained that 
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In this way he transformed the problem in next form and deduced the value. Using only fourteen terms he obtained that 
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 .This is far more accurate than summing a thousand terms of the original series. Four year later, in 1735, 
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and announced this discovery in 1735 at the age of 28. His arguments were 

based on manipulations that were not justified at that time. Later, he was able to produce a truly rigorous proof that the sum of 

above series (2.1) is 
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[Pfaff, 2007; Paudyal, 2014; David, 2012]. 

      Similarly, Kummer’s and Markoff’s transformations [David, 2012; Stanattis, 2009] of (2.1) are respectively given by 
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From (2.10) we get the sum accurate to 6 decimal places taking 17 terms (p = 9) while the relation (2.11) gives same accuracy 
taking only 9 terms. So, it is seen that (2.11) is fast convergent than (2.10). But both these relations are seemed useful for 
particular cases. Again, some mathematicians studied about the upper and lower estimate method given by Euler as in the 
following theorem. 
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 In this theorem, O.E. Stanattis et al. [Nick, 2014; Stanattis, 2009] argued that for the remainder Rk we can have 
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They also argued that   the remainder ݎ௞ becomes such that 
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Thus they restated the above theorem in the following form [Stantis, 2009; Collins,1992]. 
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This instrument is stronger in the sense that it approximates the series (2.1) with error less than 10-7 when k=4 and m=4. By 
increasing the value of k and m it gives the sum equal to 1.6449340668482323… whose error is less than 10 -16. Ehnberg, in 1966, 
has also studied about the shortcut method of approximation of infinite series of positive terms [Ehenberg,1966]. Similarly. 
Mishra [Mishra, 2007; Mishra et al., 2012] studied about the approximation of different functions in Banach space and established 
many theorems of transformations.

 
 Theorem (Integral Test) 2.3.1: Let {an} be a sequence of positive terms. Suppose   an = f (n), where f is continuous, positive, 

decreasing function of x for all x ≥ N, a positive integer. Then the series 


 Nn
na and the integral 



N

dxxf )(  both converge or 

both diverge [Nelson,2003]. 

3. MAIN THEOREMS 

 
 

 

Theorem 3.1: Let





0

)(
k

krkda , where -1< r < 1 , a ≥ 0 be an infinite series of positive terms which is monotonically 

decreasing then it is convergent and converges approximately  to 





 







 r

dnda
r

rrkda

n
n

k

k

ln2
)12(

ln
)(

2
12

0
  , for n≥5                    (3.1) 

Proof: Here we have 





0

)(
k

krkda  which is an infinite series. First, we prove it is convergent. Assume f(x) = (a + x d)r x 

where x=1, 2, 3…  Obviously, this function is an exponential function and hence it is continuous on [0, ∞). Now, the improper 
integral that describes the partial sum of the given series is given by 

 




 


xd
t

dx
t

N

x

N

x rxd)(a
lim

rxd)(a 



 

   dxrxddxra
t

t

N

t

N

xxlim
 



 

t

N

xxx

r
dr

r
dxr

r
ar

t 










 2)(lnlnln

lim t

N

xxx

r
dr

r
dxr

r
ar

t 










 2)(lnlnln

lim
 

    










 22 lnlnlnlnlnln

lim
r

dr
r

dNr
r

ar
r

dr
r

dtr
r

ar
t

NNNttt

 

 2lnlnln r
dr

r
dNr

r
ar NNN


 

which is finite value for every N=1, 2, 3… 

 
 2lnlnln r
dr

r
dNr

r
ardxrxda

NNN
x

N



                                   (3.2) 

It implies that   dxrxda x

N



   converges and hence by integral test the given series





0

)(
k

krkda also converges.  

Again,     





n

k

x

n

k dxrxdarkdasumUpper
0

)(  





n

k

krkda
0

)(
 2lnlnln r
dr

r
dnr

r
ar nnn

                                                  (3.3) 

Similarly, 



n

k

krkdasumLower
0

)( +   dxrxda x

n






1

 





n

k

krkda
0

)(
 2

111

lnln
)1(

ln r
dr

r
rnd

r
ar nnn 




                                                              (3.4) 

Taking the special arithmetic mean of (3.3) and (3.4) we get 
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This is the required result which is valid for all values of    a ≥ 0 and 1r  

 

Example: 1 Estimate the sum of infinite series 

 65432 5
13

5
11

5
9

5
7

5
5

5
31                        (3.7) 

Soln:  If   a=1, d=2, r =  ଵ
ହ
   and n=5  in the equation (3.6) ,we get (3.7) with the sum 

 
875097515.1

5ln
2

2
15221

5ln
5

5
11

5
9

5
7

5
5

5
3 1   211

5.5

5432 


















 






 

If we apply the relation 
 211 r

dr
r

aS





  ,we get the sum of (3.7) equal to 875.1
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actual sum. We argued that as there are infinitely many terms in this series with many digits after decimals and hence it is very 
interesting that its infinite sum is exactly 1.875. If we add 16 terms directly then it becomes 1.874999999725568. Then what is the 
sum of remaining infinite terms? Is it equal to zero or very near to zero? So it creates some curiosity to us. In our result (3.6) if we 
take the different values of n, we get the following scenario. 

 

 

 

 

 

 

 

 

 

Table-1 Estimated value of Infinite sum 

 

So our finding (3.6) is quite interesting  as it is being a tool that finds the more accurate value if we chose n ≥ 5 and might have 
some error depending upon the value of n which can be corrected more or less by putting the sufficient large value of n including 
some adjustment.  

 

Now if we apply the approximation given by theorem (2.2.2) to this example, we get the following result.
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For k = 5 and m = 3 we will have 

n S∞ Error 

5 1.875097515 0.000097515 

6 1.87502307 0.00002307 

7 1.875005327 0.000005327 

8 1.875001208 0.000001208 

9 1.87500027 0.00000027 

10 1.87500006 0.00000006 
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which gives 
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=1.875345171 (Using Online Desmos Scientific Calculator) 

Here we observed that Euler- Maclaurin formula in this modified form has less accuracy in such series.  
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Soln:  Consider a function defined by 
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This function defined on [1,∞)  is monotonically decreasing with positive terms and differentiable on [1,∞) 
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which is finite for every N. So, by integral test the given series
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sum by using our special mean method as 
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When  n=5 then the relation gives the value as 
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= 0.3927403847 with error less than 0.0000005 

 

If we take n=10 then this sum becomes 0.3927042784 while 
n=20 gives 0.39269973240 which is accurate to 6 decimal 
places where the error is decreasing depending on the value of 
n but if we add directly then the sum of 500 terms  only gives 
0.3925740817299737 which has more error than our result by 

taking only 5 terms. Its accurate value is taken as 8


[Barbour, 
1881]. So, in this case also our approximation is more 
appropriate. Thus, we generalize this concept in the form of 
following theorem. 

 

Theorem 3.2 (Generalization): Let f(x) is a continuous, 
positive and decreasing function of x defined on [0, ∞). Then 
the infinite sum of series formed by this function can be 

approximated by the relation 
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4. CONCLUSION 

In this research study, we reviewed a small part of 
Euler’s work in infinite series containing the positive terms 
which are monotonically decreasing.  By following his work, 
we established that the infinite series of type 
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for n ≥ 5. By illustration of  some examples  and using this 
concept we also   established a  theorem given by “For any 
function f(x) which is a continuous, positive and decreasing and  
defined on [0, ∞) such that its  infinite sum formed by this 
function can be approximated by the relation



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x
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In these days many problems in applied mathematics have been 
solved in the form of infinite series and hence it needs very 
easy method of approximation of the sum. In this sense our 
method also plays an important role. Moreover, other 
researchers can extend such methods of approximation that 
may help in computer programming too. 
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