
The Journal of Engineering and Exact Sciences – jCEC, Vol. 06 N. 05 (2020)
journal homepage: https://periodicos.ufv.br/ojs/jcec
doi: 10.18540/jcecvl6iss5pp0585-0593
OPEN ACCESS – ISSN: 2527-1075

ARDUINO BASED PLATFORM FOR PROCESS CONTROL LEARNING

PLATAFORMA BASEADA EM ARDUINO PARA APRENDIZADO DE CONTROLE DE
PROCESSOS

B. C. M. HENRIQUE1, L. C. M. HENRIQUE2 and H. M. HENRIQUE3,*

1 Federal University of Uberlandia, Electrical Engineering Department, Uberlandia, Minas Gerais, Brazil
2 Federal University of Uberlandia, Mechanical Engineering Department, Uberlandia, Minas Gerais, Brazil
3 Federal University of Uberlandia, Chemical Engineering Department, Uberlandia, Minas Gerais, Brazil

*Corresponding author. Federal University of Uberlandia, Chemical Engineering Department, Uberlandia, Minas Gerais, Brazil, Phone: +55 34 3230-9540
e-mail: humberto@ufu.br (H. M. Henrique).

A R T I C L E I N F O A B S T R A C T
Article history:
Received 2020-11-04
Accepted 2020-12-12
Available online 2020-12-12

This work deals with implementation of an experimental flowrate control unit using free and
low-cost hardware and software. The open-source software Processing was used to develop
the source codes and user graphical interface and the open-source electronic prototyping
platform Arduino was used to acquire data from an experimental unit. Work presents
descriptions of the experimental setup, the real-time PID controllers used and
theoretical/conceptual issues of Arduino. PID controllers based on internal model control,
minimization of the integral of time-weighted absolute error, Ziegler-Nichols, and others were
tuned for setpoint and load changes and real-time runs were carried out in order to make real-
time use of control theory learned in academy. Results showed the developed platform proved
to be suitable for use in experimental setups allowing users compare their ideas and
expectations with the experimental evidence in a real and low-cost fashion. In addition, the
instrumentation is simple to configure with acceptable level noise and particularly useful for
control/automation learning with educational purposes.

p a l a v r a s - c h a v e
Real-time control
Arduino applications
Processing applications
PID with Arduino
Process control education

k e y w o r d s
Controlee m Tempo Real
Aplicações em Arduino
Aplicações em Processing
PID com Arduino
Aprendizado de Controle de
Processos

 R E S U M O

 Este trabalho trata da implementação de uma unidade experimental de controle de vazão
utilizando hardware e software gratuitos e de baixo custo. O software livre Processing foi
usado para desenvolver os códigos fonte e a interface gráfica do usuário e a plataforma de
prototipagem eletrônica de código aberto Arduino foi usada para adquirir os dados de uma
unidade experimental. O trabalho apresenta descrições da configuração experimental, dos
controladores PID de tempo real usados e das questões teóricas/conceituais do Arduino. Os
controladores PID com base nos métodos controle por modelo interno, minimização da
integral do erro absoluto ponderado no tempo, Ziegler-Nichols e outros foram ajustados para
mudanças de setpoint e de carga e execuções em tempo real foram realizadas a fim de fazer
uso da teoria de controle em tempo real ensinada na academia. Os resultados mostraram que
a plataforma desenvolvida se provou adequada para uso em configurações experimentais,
permitindo aos usuários comparar suas ideias e expectativas com as evidências experimentais
de forma real e com baixo custo. Além disso, a instrumentação é simples de configurar com
nível de ruído aceitável e particularmente útil para aprendizagem de controle automação com
fins educacionais.

 JCEC - ISSN 2527-1075.

1. INTRODUCTION

Teaching and research of process control in academy are
based extensively on available simulation packages and virtual
laboratories. Of course, both have their well-known importance
in process control teaching and research. But, unfortunately,
experiments with control loops are often limited to these virtual
domains and students do not get feedback from physical and real
world about impact of control algorithms and their parameters.
Reason for this is high hardware and software costs needed to
implement control algorithms in real-time fashion. Teaching
and research in control and automation in undergraduate and
graduate courses are expensive because they involve the use of
high-cost proprietary hardware and software. Because of this,
control and automation courses are relegated to theoretical
approach, leaving students without practical experience of these
technologies. This work aims to develop a low-cost, direct, and
surprisingly powerful experimental platform for implementing
real-time control algorithms. This platform can be used in
process control laboratories for teaching and research activities.
The platform consists of Arduino boards, a low-cost computer
running WindowsTM and low-cost Arduino compatible sensors.
Sensors and motors are connected to input/output Arduino pins,
allowing computer to send and receive signals to/from
experimental setups. Arduino pin functions are software
programable. Control algorithms were implemented using the
open-source Processing software, which allows students to
develop their control algorithms and graphical user interfaces
with no additional cost. Graphical user interface and
communication with Arduino were developed in Processing
language.

In the last years, Arduino platforms have gained
importance in control and automation applications due to their
open-source and low-cost features (Zachariadou et al., 2015;
Barber et al., 2013; Granvillano, 2014; Ishikawa and Maruta,
2014; Sobota et al., 2013; Úbeda et al., 2009; Valera et al.,
2014). Considering all features of the Processing/Arduino
platform as well as results from other researchers, this paper
intend to show how worthful proposed platform can be in
process control learning.

Remaining content of this paper is organized as follows.
Section 2 introduces Arduino and Processing platforms briefly,
highlighting their main features. Experimental setup is
described in Section 3. Section 4 presents mathematical
modelling, model validation of the flowrate dynamical process,
experimental results of PID, GMC and MPC controllers
intended to control the process flowrate. Section 5 presents
results of the impact of the use of proposed platform in academic
performance of engineering students in Federal University of
Uberlandia. Finally, main conclusions of the work are discussed
in Section 6.

2. THE PLATFORM DEVELOPED

Platform developed consists of an Arduino board, a
computer, and a software to make all “things” to work. These
hardware and software form a perfect match for real-time

control applications, combining graphic power of the
Processing software and the input-output capability of Arduino
boards. Processing uses Java language and allows to transform
Arduino boards into real programmable controllers. In this
scenario, students/users can create control algorithms freely
using the same tools and workflow concepts that are used in
development of industrial control algorithms. Control platform
developed specifically consists of an Arduino UNO R3
microcontroller board, an 8th generation Intel Core i7 16GB
RAM computer running under WindowsTM 10 Pro, Arduino
software IDE, Processing software IDE, two 12VDC
minipumps, a hall-effect flow sensor and a L293d motor shield.
Individual components are discussed in the following sections.

2.1 Arduino UNO Board

Arduino is a well-known open-source electronic
prototyping platform that consists of a central microcontroller
with many built-in features such as digital input/output pins,
analog inputs, pulse width modulation (PWM) outputs and
others. Arduino boards are inexpensive, flexible, and easy to use
for both beginners and professionals, especially for those who
would not have access to more sophisticated controllers and
more complicated tools. Regarding the software to program
Arduino, the same IDE (Integrated Development Environment)
is used for all boards and it is available for different OS
(Arduino, 2015). This IDE is open and free, as well as easy to
get, start and use. C++ language with minor modifications is
used as programming language, which enables users create from
a simple program based on procedures in a single file to a
complex object-oriented program in multiple files. Other
relevant aspect of the Arduino platform is its extensive amount
of information available, ranging from basic documentation in
the official web site to full books for different application fields
(Banzi, 2011; Warren, et al., 2011).

Arduino Uno R3 board used in this work is a
microcontroller board based on the ATmega328P. It has 14
digital input/output pins (of which 6 can be used as PWM
outputs), 6 analog inputs, a 16 MHz ceramic resonator
(CSTCE16M0V53-R0), an USB connection, a power jack, an
ICSP header, and a reset button. It contains everything needed
to support the microcontroller, just connect it to a computer with
an USB cable or power it with an AC/DC adapter or battery to
get started. In current platform, the board was programmed to
act as a slave and its inputs and outputs were used to interact
with physical world (Figure 1a). Arduino UNO R3 board was
used for acquiring data from a hall-effect flow sensor and
sending electrical control signal to two DC minipumps,
simultaneously. The aim is to control the flowrate by using
minipumps. This board has in its core functions for reading
analog signals using a digital analog converter. Arduino UNO
board (Figure 1b) has digital input and output pins, as well as
analog input and output pins. All six PWM outputs are 8-bit
resolution outputs and the analog inputs are 10-bit resolution
inputs. The Atmega328's AD converter clock allows acquisition
up to 15400 samples per second.

2.2 Arduino IDE

Arduino Integrated Development Environment (IDE) is
a multiplatform application written in Java derived from the

 jCEC - ISSN 2527-1075.

Processing and Wiring projects. The Arduino IDE is designed
to introduce programming for beginners. It includes a code
editor for program compiling and loading to boards with a single
click. This IDE consists of a simple text editor for writing codes,
a message area, a text console, tabs for managing files, a toolbar
with buttons for common actions, and several menus. The
Arduino IDE also incorporates several libraries. These libraries
provide extra functionality for use in sketches and expand
capabilities of Arduino boards for manipulating data. A number
of libraries come installed with the IDE, but users can also
download or create their own.

This capability allows users create many input and output
operations in an easy fashion, just defining the two functions

following in order to make a functional program:

setup() - Inserted at the beginning, which can be used to
initialize configuration.

loop() - Call to repeat a command block or wait until it is
disconnected.

Arduino IDE uses the GNU toolkit and AVR Libc to
compile programs and a command-line program (avrdude) to
upload programs to boards. Processing IDE has also a serial
communication library to communicate with Arduino boards in
an easy fashion. Therefore, Arduino IDE and the Processing
IDE communicate with each other through serial
communication.

Figure 1 - Arduino/Processing teaching and research platform. (a). Wiring diagram. (b). Arduino UNO R3 details.

2.4 Arduino Shields

Arduino boards and their clones make use of shields to
expand their capability. Shields are printed circuit boards
normally attached to top of Arduino boards through a
connection powered by pin-connectors. They are expansions
that provide several specific functions from engine handling to
wireless network systems. In this work the L293D Motor Shield
was used to control DC motors. More details about this shield
will be given in the following.

2.5 Real-time Controllers

Last step in creating a real-time control platform was the
implementation of the control algorithm on the target platform.
Several PID control algorithms as presented in Seborg (2011)
were implemented in Processing language. This type of
controller was chosen because of its successful and vast
popularity in industrial applications Seborg (2011). Graphical
interface was also implemented in Processing and all inputs,
outputs and setpoints were acquired by an Arduino UNO R3.
Communication protocol used between master (computer) and
slave (Arduino) was the serial standard via an USB cable in
asynchronous mode, in which data can be sent and received at
any time, with the communication rate parameters (baud rate)
of 115200 bps, 8 data bits, no parity and 1 stop bit. This way, it
was possible to connect the computer and its devices such as
keyboard, mouse and terminals to Arduino and several sensors.
The program that implements actions to acquire data from
sensors was compiled by Arduino IDE and loaded into the
Arduino microcontroller flash memory via USB cable. Program
that implements the control strategies was compiled by
Processing into a computer running under WindowsTM 10 Pro.

Platform allows sampling frequencies up to 15400 samples/s,
depending on system dynamic, control algorithm complexity
and number of input/output signals acquired.

3. EXPERIMENTAL SETUP

Figure 2 shows a schematic representation of the setup
used in this work. Experimental system consists of a small tank
from where water is pumped through a hall-effect flowrate
sensor (model YF-S402 0-2.0 L/min). Hall-effect sensor is a
transducer that under application of a magnetic field responds
with a variation in its output voltage. This output voltage is a 5V
square wave with variable frequency depending on the
measured flowrate. This digital signal is acquired by an Arduino
UNO digital channel and the wave period is measured using the
pulseIn() Arduino IDE function. This sensor was previously
calibrated using a weight balance and stopwatch. Two
centrifugal minipumps (model RS-385 DC 12V and 0-2 L/min)
in parallel were used to pump water through the flow sensor. In
this setup, total flowrate is manipulated by changing voltage at
pump terminals from 0 to 12 V, using a motor shield for Arduino
(model L293D Driver Bridge H) that controls up to 4 DC
motors. This motor shield is based on the CI L293D, also known
as H bridge, and it can control up to 4 DC motors, 2 servo motors
or 2 stepper motors. This shield receives PWM signal from the
Arduino board. Two Arduino UNO PWM pins are then used to
manipulate the minipump flowrates using the analogWrite()
Arduino IDE function. Pumped liquid remains in closed circuit,
avoiding water waste during operation of the experimental
setup.

Figure 2 - Experimental Setup. (a). Schematic diagram of the platform. (b). Details of a DC Motor Shield L293d mounted

over Arduino UNO.

4. RESULTS AND DISCUSSION

4.1 System Identification

Process of pumping water through a flow sensor is
simple. Based on this, a first order plus dead time (FOPDT) is
the first candidate to model the process (Seborg, 2011). Process
input is the voltage send to minipumps and the process output is
the flowrate measured by flow sensor. Then, the model can be
written as:

(ݏ)ܩ =
(ݏ)′ܳ
(ݏ)′ܷ

=
ఏ௦ି݁ܭ

ݏ߬) + 1)
 (1)

where q(t) is the process output (flowrate) and u(t) is the process
input which is a pulse width modulation (PWM) signal sent to
DC motor shield L293d. K, and are the model parameters.
These parameters were estimated using experimental data
acquired from an open loop run. PWM pins of the Arduino UNO
R3 can generate PWM signal with an 8-bit resolution. As a
consequence, a 0-12V signal can be sent to both minipumps by
the DC motor shield L293d. This 0-12V was mapped as 0 to 255
bytes (8-bit resolution board, 28 bytes) in the Arduino IDE,
software that interfaces with the board. In the open loop
experiment, an input, u(t), ranging from 90 to 255 bytes was sent
from Processing to Arduino, from Arduino to motor shield, and
from motor shield to both minipumps. Process output (flowrate)
was measured by the hall-effect flow sensor. A square wave
(digital signal) was generated, and its frequency (Hz) was
measured by a digital pin in Arduino board. This frequency was
sent to Processing and the flowrate was calculated by using a
linear equation previously calibrated. A half second sampling
time was used. Figure 3 show open loop data. Model time delay
() was determined by data inspection and it was fixed as =
0.5 s. Other two model parameters of Equation 1 were calculated
by nonlinear regression using open loop data, i.e., u(t) versus
q(t). Experimental data were zero-mean normalized before
estimating parameters for better convergence properties of the
optimization package used. Calculated values of the parameters
are as follow:

(ݏ)ܩ =
(ݏ)′ܳ
(ݏ)′ܷ =

6.69݁ି௦/ଶ

ݏ0.39) + 1) (2)

K = 6.69 ± 0.92 mL byte-1 min-1, = 0.39 ± 0.02 s, and = 0.5
s.

Results showed the relative standard deviation of the
time constant (= 100/ = 5.12%) is smaller than the relative

standard deviation of the static gain (= 100K/K = 13.5%).
Therefore, the model uncertainty in the static gain is larger than
uncertainty in time constant. Figure 3 confirms visually that
FOPDT model represents the experimental data reasonably
well, with good identification of the process time constant
(transient regions), but with some difficulty in steady state
regions, especially in regions where flowrate is low.

Figure 3 - Open loop run. Experimental data versus

mathematical linear model.

4.2 Closed loop operation

Despite model uncertainties, Equation 2 was used to tune
PID controllers. Output of this type of controller is calculated
based on setpoint deviation (Ogata, 2003; Dazzo and Houpis,
2002). Control action, u(t), calculated by PID controllers takes
the form of Equation (3) where parameters KC, I and D must
be tuned:

(ݐ)ݑ = ܭ ቆ݁(ݐ) +
1
߬ூ

න ݐ݀(ݐ)݁ + ߬
(ݐ)݁݀

ݐ݀

௧

ቇ + (3)ݑ

Traditional methods of PID tuning such as internal model
control (IMC) by Morari, (1983), Ziegler-Nichols (ZN) by
Ziegler and Nichols (1942), minimization of time-weighted
absolute error (ITAE) by Lopez and Murril (1967) and Rovira,
and Murrill (1969), Åström and Hägglund (AH) by Åström, T.
Hägglund (2004), and Cohen and Coon (CC) by Cohen and
Coon (1954) were used to tune PID controllers. These methods
were chosen because they are classical in most control courses
in the world. In order to save space, these methods are not
described in this paper. Readers can find more details about
them in the literature cited. Control move in Equation 3 was
implemented online in Processing IDE and Arduino acquired
data from experimental setup in real time. Table 1 show all
tuned controllers by using aforementioned methods. Besides of

 jCEC - ISSN 2527-1075.

this, two dimensionless performance indexes were used to
compare closed loop responses. These indexes are defined as
follow:

ݑܫ =
1

ஶݐ) − (ݐ ݐ ฬ
(ݐ)ݑ∆
(ݐ)ݑ

ฬ
௧ୀ௧ಮ

௧ୀ௧బ

 (4)

ݕܫ =
1

ஶݐ) − (ݐ ݐ ቤ
(ݐ)௦ݍ) − (ݐ)ݍ

(ݐ)௦ݍ ቤ
௧ୀ௧ಮ

௧ୀ௧బ

 (5)

where (ݐ)ݑ (ݐ)ݍ , and ݍ௦(ݐ) are the manipulated variable
(control move), controlled variable and setpoint at sampling
instant “t”, ∆(ݐ)ݑ is the control move (effort) at same sampling
instant, t0 and t are the initial and final instant of experimental
run. Of course, good control performances yield small “ݑܫ” and
 .values ”ݕܫ“

Table 1 - P, PI and PID parameters tuned by using
identified FOPTD model of the real plant.

Method P PI PID

IMC --
Kc = 0.0657
I = 0,3920
(C = I)(*)

--

ITAE (setpoint) -- Kc = 0.0701
I = 0.4783

Kc = 0.1173
I = 0.6435
D = 0.1514

ITAE (Load) -- Kc = 0.1012
I = 0.6863

Kc = 0.1611
I = 0.5571
D = 0.1903

Ziegler-Nichols
(ZN) Kc = 0.1172 Kc = 0.1055

I = 1.6650

Kc = 0.1406
I = 1.0000
D = 0.2500

Cohen-Coon
(CC) Kc = 0.1670 Kc = 0.1179

I = 0.4927

Kc = 0.1986
I = 0.8544
D = 0.1474

Åström and
Hägglund (AH) -- Kc = 0.0537

I = 0.4122 --

[Kc] in mL-1min.byte, [I] in seconds and [D]in seconds. (*)c is the
closed-loop time constant (tuning parameter).

4.2.1 Proportional and integral action

Steady-state error concept in control loops is addressed
in regular control courses. Students learn proportional action
(Kc) is able to reduce rise time, but it is not able to eliminate
steady-state error. They also learn only integral action (I) in
control loops is able to eliminate steady-state error, but it can
make transient response worse. In order to demonstrate
differences between these two control modes (P and I) in a real
case, the two ZN controllers (P and PI) from Table 1 were
implemented in Processing and tested for real setpoint tracking.
Results from Figure 4 reveal control responses exactly as
predicted in control literature, i.e., P controller response is faster
than PI controller response (ݑܫ < ݑܫூ). However, P controller
was not able to eliminate offset. Larger ݕܫ value than ݕܫூ
value was caused by the large offsets present in P controller
responses. PI controller eliminated offset as predicted by control
theory.

Figure 4 - P and PI responses and control moves for

setpoint changes. Controllers tuned by the Ziegler-Nichols
method.

4.2.2 Integral and derivative action

Control literature states derivative control (D) has effect
of increasing closed loop stability, reducing overshoots, and
improving transient response. Results in Figure 5 show control
loop behavior of two controllers (PI and PID) in a real case. Both
controllers were tuned using ITAE method and they are shown
in Table 1. They were implemented in Processing and tested for
real setpoint tracking. Controlled responses of both controllers
were similar (ݕܫூ ݕܫூ). But in terms of control move, the
PI performance was better than PID because ݑܫூ ூݑܫ >
(Figure 5). In addition, at t = 105 s small oscillations in the PID
response can be seen. This response degeneration could be
likely caused by noise in the acquired data. Noise is present in
all real measurements, and it can degenerate numerical
calculation of error derivative in Equation 3. Response
degeneration can also be caused by plant/model mismatch.
Figure 3 reveals some deficiency of the model to represent the
real plant in low flowrate region, where fluctuations have
appeared. It well known the derivative action is almost never
used in industrial applications (Seborg, 2011) because of noise
in real data. Students can learn about this with real data and can
face this challenge in a practical situation, for instance,
designing digital filters for noise.

Figure 5 - PI and PID responses and control moves for
setpoint changes. Controllers tuned by ITAE method.

4.2.3 Comparison of tuning methods

Other classical controllers were also tested in servo
problem in order to verify their real performances. Figure 6
show results for PI controllers tuned using IMC, CC, and AH
techniques (Morari, 1983; Cohen and Coon, 1954; Åström and
Hägglund, 2004). All controllers carried out the proposed
setpoint tracking. PIIMC and PIAH had good and similar
performances with similar values of the ݑܫ and ݕܫ indexes. PICC
presented some over/undershoots and oscillations from t = 45 s

to t = 60 s in low flowrate operational region. Aggressive
response of the PICC in comparison with the PIIMC and PIAH can
be explained by greater KC and smaller I than PIIMC and PIAH
(Table 1) as stated by control literature. This result is supported
by Rivera and Morari (1986) that states when (/) < 2 the
Cohen-Coon method presents bad robustness characteristics. On
the other hand, PIIMC and PIAH had good similar responses
because their KC and I are alike (Table 1).

Figure 6 - PI responses and control moves for setpoint
changes. Controllers tuned by the IMC, CC, and AH

methods.

Several results in control literature (Lopez and Murril,
1967; Rovira et al., 1969) also suggest making distinct tuning
for load and setpoint changes. In order to verify this statement
in practical situations, the ITAE controllers (Lopez and Murril,
1967; Rovira et al., 1969) presented in Table 1 were tested for
setpoint and load changes. Two different PID controllers were
tuned based on setpoint ITAE and load ITAE rules. Controller
parameters are shown in Table 1. Figure 7 show the results. For
setpoint tracking the setpoint ITAE controller has clearly a
better performance than load ITAE controller, as control theory
states (Lopez and Murril, 1967; Rovira et al., 1969). This better
performance is also supported by smaller ݑܫ and ݕܫ indexes
(Figure 7) of setpoint ITAE controller. Concepts about stability
and oscillatory control loop behavior can be investigated by
using this simple experimental setup. In this case, the poles of
characteristic equation (1+ GcGol = 0, [11]) were calculated:

 :ݎ݈݈݁ݎݐ݊ܿ ܧܣܶܫ ݐ݊݅ݐ݁ܵ
ଵ = ଶ ;3.81− = ଷ ݀݊ܽ 2,76− = −1,70 (6)

 :ݎ݈݈݁ݎݐ݊ܿ ܧܣܶܫ ݀ܽܮ

ଵ = ଶ ;9.12− = −1,68 + ଷ ݀݊ܽ 1,38݅ = −1,68 − 1,38݅
(7)

Reason for oscillations in load ITAE controller behavior
can be now explained. This controller has two complex poles
with negative real part. Therefore, this control loop response
will always be oscillatory with over/undershoots and damped
oscillations for step setpoint changes, exactly as seen in Fig. 7.
This figure also reveals a worse behavior of this controller at
operational region with low PWM. This is likely caused by
plant/model mismatch. Figure 3 show clearly a model
deficiency in the static gain of the process. Therefore, the
plant/model mismatch is more severe in this region of operation
and it can be likely responsible for worse performance of
controller in this region. On the other hand, expected control
loop response of the setpoint ITAE controller will be monotonic
with no oscillations and smooth settlement in setpoint as also
seen in Figure 7, because its closed loop poles are all negative
real numbers.

Figure 7 - PID responses and control moves for setpoint

changes. Controllers tuned by the Setpoint ITAE and Load
ITAE methods and used for setpoint changes.

Inverse situation was also investigated, the use of
setpoint and load ITAE controller for disturbance rejection (load
problem). For this case, step changes were introduced in PWM
signal sent to minipump #2, emulating process disturbances.
PWM signal to minipump #1 is only manipulated variable.
Figure 8 show the results. Load ITAE controller was able to
reject the disturbances faster than setpoint ITAE controller,
exactly as predicted by control theory (Lopez and Murril, 1967;
Rovira et al., 1969). This result is also supported by its smaller
ݕܫ index than setpoint ITAE controller at expenses of more
aggressive control moves (ݑܫூ ௗ ூ ௌ௧௧ݑܫ < , Figure
8). Oscillations noted in load PID response is caused by
presence of complex poles at closed loop transfer function as
before mentioned.

Figure 8 - PID responses and control moves for

disturbance rejection. Controllers tuned by the Setpoint
ITAE and Load ITAE methods and used for load changes.

4.2.4 Advanced control methods

Advanced process control (APC) refers to a broad range
of techniques and technologies implemented within industrial
process control systems, such as feedforward, decoupling, and
inferential control. APC includes also techniques based on
process model, such as Model Predictive Control (MPC) and
Generic Model Control (GMC). The flowrate control problem
approached can be controlled reasonably by PID controllers as
seen before. Despite this control process is quite simple, a MPC
and GMC were developed to control the flowrate in a real-time
fashion by using the proposed platform. The objective is to show
the proposed platform is flexible enough to implement both
conventional and advanced control techniques using low-cost
devices.

Generic Model Control

Generic Model Control (GMC) is a control method

 jCEC - ISSN 2527-1075.

developed by Lee and Sullivan (1988) that directly imbeds a
process model in the control algorithm. The process model can
be linear or nonlinear. The basic idea this method is to calculate
the control actions in order to make the controlled output to
follow a reference trajectory q*(t) as shown in Equation 8:

∗ݍ݀

ݐ݀ = (ݐ)௦ݍ]ଵܭ − [(ݐ)ݍ + ଶܭ න (ݐ)௦ݍ] − ݐ݀[(ݐ)ݍ
௧

 (8)

here ݍ௦(ݐ) is the setpoint for the controlled output ܭ ,(ݐ)ݍଵ and
 ଶ are controller tuning parameters. The controlled output is theܭ
flowrate. Equation (1) in time domain can be written as follows:

(ݐ)ݍ݀
ݐ݀ =

1
߬

(ݐ)ݑܭ] − (9) [(ݐ)ݍ

Control action (ݐ)ݑ is calculated imposing (ݐ)̇∗ݍ =
 So, substituting Equation into Equation 9 and solving for .(ݐ)ݍ̇
 :the control action is given as follows ,(ݐ)ݑ

(ݐ)ݑ =
1
ܭ ቊ(ݐ)ݍ + (ݐ)௦ݕ]ଵܭ߬ − [(ݐ)ݍ

+ ଶܭ߬ න (ݐ)௦ݍ] − ݐ݀[(ݐ)ݍ
௧

ቋ

(10)

Equation 10 was solved online every sampling time in
Processing and the calculated control action u(t) was sent to
experimental plant. In the next sampling instant, all calculations
were repeated, and this process continued up to end of the
experimental run. Two experimental runs were carried out using
the tuned parameters ܭଵ = ଵିݏ 2.0 ଶܭ , = ଶିݏ 0.25 and ܭଵ =
ଶܭ ,ଵିݏ 1.0 = ଶ. Fig. 9 show the results. Both controllersିݏ 0.5
tracked the setpoint with no offset and with some
over/undershoot in setpoint transitions. GMC2 presented
oscillatory behavior for setpoint changes in lower values of
flowrate. Oscillatory behavior can be addressed re-tuning
parameters ܭଵ and ܭଶ . Results from Fig. 9 show a smaller
performance index (ݕܫ) for GMC1 than GMC2.

Figure 9 - GMC responses and control moves for setpoint

changes. ࡷ = . ି࢙, ࡷ = . ି࢙ for GMC1 and
ࡷ = . ି࢙, ࡷ = . ି࢙.

On the other hand, GMC2 presented smaller ݑܫ index
(smaller control moves) than GMC1. These results are a
consequence of the tuning parameters ܭଵ and ܭଶ. Results from
Figure 9 also show the controlled output followed the reference
trajectory satisfactorily for setpoint changes in higher values of
flowrate. But the controlled output deviated from reference
trajectory for setpoint changes in lower values of flowrate. This
result is likely a consequence of plant/model mismatch. Plant
model is less accurate in lower values of the flowrate than higher
values of the flowrate, as can be seen in Figure 3.

Model Predictive Control (MPC)

Model predictive control (MPC) is an advanced method
of process control that is used to control a process subject to a
set of constraints in manipulated and controlled variables. It has
been used in process industries, chemical plants, and oil
refineries since the 1980s. First-generation MPC systems were
developed independently in the 1970s by two pioneering
industrial research groups. Dynamic Matrix Control (DMC)
developed by Shell Oil (Cutler and Ramaker, 1980) and the
approach by Adersa (Richalet et al., 1978) have quite similar
capabilities. An adaptive MPC technique, Generalized
Predictive Control (GPC), developed by (Clarke and Mohtadi,
1987) has also received considerable attention. Model
predictive control has had a major impact on industrial practice.
For example, an MPC survey by (Qin and Badgwell, 2003)
reported that there were over 4,500 applications worldwide by
the end of 1999, primarily in oil refineries and petrochemical
plants. In these industries, MPC has become the chosen method
for difficult multivariable control problems that include
inequality constraints. Basic idea is to use the process model to
predict future values of the outputs and calculate the process
inputs in order to minimize the distance between setpoints and
predicted process outputs. Input changes are calculated based on
both predictions and measurements. In addition, process inputs
and outputs can be subject to constraints. Figure 10 summarizes
the MPC approach.

Figure 10 - Model predictive control approach.

MPC is popular in industry due to some important
advantages, such as constraints on inputs and outputs that can
be considered in a systematic manner, control calculations that
can be coordinated with the calculation of optimum setpoints,
the approach can be directly extended to multiple-input-
multiple-output processes, and its use for complex problems
(large time delays and high-order dynamic). In this sense, for
the current single input single output system, the MPC can be
mathematically transformed into an optimization problem as
follow:

min
,ଵݑ) ,ଶݑ … , (ுݑ

= ܬ ൫ݍ
௦ − ൯ଶݍ

+ ଶ(ݑ∆)ݓ
ு

ୀଵ

ୀଵ

 (11)

Subject to:

≤ ݑ ≤ ௫ݑ

(12)

|ݑ∆| ≤ ௫ (13)ݑ∆

where ݍ is the controlled variable at ith sampling time over the
prediction horizon, ݍ

௦is the setpoint at ith predicted sampling
time over the prediction horizon, ݑ is the manipulated variable
at ith sampling time over the control horizon, ∆ݑ = ݑ − ,ିଵݑ

 , Pݑ is the weighting parameter penalizing large changes inݓ
is the prediction horizon, and H is the control horizon. Next, the
MPC represented by Equation 11 to 13 was applied to the real
system studied. Mathematical model in Equation 9 was used
into MPC to calculate control moves. The optimization problem
(11)-(13) was posed as a successive quadratic problem (SQP)
and solved online in Processing. Only first control move was
sent to experimental plant. In the next sampling instant, new
control moves were calculated again, and all calculations were
repeated up to end of the experimental run. Three experimental
runs were carried out by using prediction horizon equal to 50
sampling instants, control horizon equal to 15 sampling instants,
weighting parameter wi equal to 0.5, and |∆ݑ|௫ ≤ 5 bytes,
௫|ݑ∆| ≤ 10 bytes, |∆ݑ|௫ ≤ 20 bytes. Figure 11 shows the
results. All three controllers tracked setpoint reasonably with no
constraint violations. Results from Figure 11 show the best
performance index (ݕܫ) was of the MPC3, followed by MPC2,
and for MPC1, as predicted by MPC control theory. On the other
hand, the best ݑܫ index (lower control move) was of MPC1,
followed by MPC2, and for MPC3. These results are a
consequence of the constraints used (௫|ݑ∆|), i.e., lower
 ௫ less aggressive is the MPC, and smoother the system|ݑ∆|
response. It can be noted that the smoothness of controller can
be directly addressed in MPC formulation adjusting the value of
 ௫. In PID control this question is addressed indirectly by|ݑ∆|
tuning controller’s parameter, and this is can be a time-
consuming step.

Figure 11 - MPC responses and control moves for setpoint

changes. The constraints were |∆u|≤5 bytes for MPC1,
|∆u|≤10 bytes for MPC2 and |∆u|≤20 bytes for MPC3.

5. PROCESS CONTROL LEARNING BY
USING LOW-COST PLATFORM APPROACH

The process control course at the Federal University of
Uberlândia (UFF) is offered to chemical engineering and control
and automation engineering students. Course approach has been
based exclusively on theoretical aspects of control theory using
only simulation packages and virtual laboratories for control
practices due to high cost to implement real-time laboratory
facilities. Because of this, all experiments with control loops
were limited to virtual domains. But in 2015, the control process
course approach was changed, and a new methodological
approach was implemented, incorporating low-cost and real-
time experiments, instead of only virtual ones. Low-cost control
experiments such as flowrate, level, pH, and temperature control
units based on proposed platform were developed and
incorporated in the control process course offered to chemical

engineering and control and automation engineering students.
Students’ performance in the process control course before and
after incorporating the new methodological approach was
evaluated from years 2000 to 2018. Usually, from 40 to 50
students have attended this course every year. The percentage of
students that have passed in process control course during this
time was used as performance index, considering only the years
supported by same teacher. This is important to eliminate the
effect of different teachers on student’s performance. This way,
the presence or absence of the new methodological approach is
the unique variable affecting the students’ performance from
years 2000 to 2018. Results can be seen in Figure 12.

Figure 12 - Students’ performance in the process control
course of the Federal University of Uberlandia from 2000

to 2018.

The mean percentage of students that have passed in
control process course before using the new approach is 87,9%
and 96,6% after using it, respectively. In order to have a fair
comparison between these two means, statistical inference on
both means is performed. We have considered x1, x2, …, xn1 is
a random sample of n1 observations from population 1 with
mean µ1 and variance ߪଵ

ଶ (percentage of students have passed in
the process control course before using new approach) and y1,
y2, …, yn2 is a random sample of n2 observations from
population 2 with mean µ2 and variance ߪଶ

ଶ (percentage of
students have passed in the process control course after using
new approach). Both populations were considered independent
and normally distributed. We now consider hypothesis testing
on the difference in the means µ1 and µ2 of these two normal
populations. Thus, the null hypothesis is stated as H0: (µ2 - µ1 =
0) or µ2 = µ1 and alternative hypothesis as H1: (µ2 - µ1 > 0) or µ2
> µ1. [26] developed a “z0” statistic that can be used to test the
null and alternative hypotheses (H0 and H1). So, the hypothesis
testing is summarized as follows:

Null hypothesis: ܪ: ଶߤ = ଵ (14)ߤ

Alternative hypothesis: ܪଵ: ଶߤ > ଵ (15)ߤ

Test statistic: ݖ = (ଵߤଶିߤ) ටߪଵ
ଶ

݊ଵ
ൗ + ଶߪ

ଶ

݊ଶ
ൗൗ

(16)

Rejection criteria: ݖ > ఈ (17)ݖ

The statistical significance level of the test is denoted as
α and it represents the probability of rejecting the null
hypothesis when it is true. Typical value of α = 0.05 (or 5%) was
used. Table 2 shows the result of this test. Since z0 = 1.824 is
greater than z0.05 = 1.645, we rejected H0: µ2 = µ1 at the = 0.05
level and conclude that new methodological approach
incorporating low-cost and real-time experiments instead of
only virtual ones increased the percentage of students that have
passed in control process course.

 jCEC - ISSN 2527-1075.

6. CONCLUSION

This work drove with an open source and low-cost
platform based on Arduino and Processing software to explore
important concepts in control and automation knowledge field.
Results showed the proposed platform (hardware plus software)
is efficient for use in experimental process control setups.
Instrumentation has an easy configuration, with low level of
noise and low cost. Therefore, experimental setups like this can
be built for didactic and research purposes in a learning
environment. Statistical result based on hypothesis test showed
proposed platform had a positive impact on the percentage of
students have passed in the process control course of the Federal
University of Uberlandia in years from 2000 to 2018. This result
supports the proposed platform can be effective for process
control learning in engineering courses. In addition, it is
possible to approach several others important concepts of
control literature such as dynamic modelling, system
identification, transfer functions, controller tuning, dynamic
system stability, in real-time fashion with low-cost investments.

From a pedagogical point of view, the advantage of this
teaching and research approach is that the student crosses his
ideas and expectations with experimental evidence, gradually
becoming competent to deal with different theories of control
and automation facing up to experimental evidence acquired in
real problems. In conclusion, this teaching and research
platform renews the student and teacher roles involved in
teaching and research in process control and automation.

R E F E R E N C E S

Arduino, Arduino web page, July 2015. Available at:
http://www.arduino.cc. Accessed on May 2020.

Åström, K. J.; Hägglund, T. Revisiting the Ziegler-Nichols step
response method for PID control, Journal of Process
Control, n. 14 (6), p. 635-650, 2004.

Banzi, M. Getting Started with Arduino, 2nd Edition. O’Reilly,
USA, 2011.

Barber, R.; De La Horra, M.; Crespo, J. Control Practices Using
Simulink with Arduino as Low-Cost Hardware. PROC.
OF THE 10TH IFAC SYMPOSIUM ON ADVANCES
IN CONTROL EDUCATION (ACE2013), Sheffield,
UK, August. 2013.

Clarke, D. W.; Mohtadi, C.; Tufts, P. S. Generalized Predictive
Control—Part I. The Basic Algorithm, Automatica, n.
23, p. 137. 1987.

Cohen, G. H.; Coon, G. A. Theoretical Considerations of
Retarded Control, Trans. ASME, n. 75, p. 827. 1953.

Cutler, C. R.; Ramaker, B. L. Dynamic Matrix Control—A
Computer Control Algorithm, PROC. JOINT AUTO.
CONTROL CONF., Paper WP5-B, San Francisco. 1980.

Dazzo, J. J.; Houpis, C. H. Análise e projeto de sistemas de
controle lineares. Guanabara Dois, Rio de Janeiro. 2002.

Granvillano, C. Arduino as a programmable logic controller
(PLC). 2014. Available at: http://www.open-

electronics.org/arduino-as-aprogrammable-logic-
controller-plc/. Accessed on June 2015.

Ishikawa, M.; Maruta, I. Rapid prototyping for control education
using Arduino and open-source technologies.
PROCEEDINGS OF 8TH IFAC SYMPOSIUM ON
ADVANCES IN CONTROL EDUCATION,
Kumamoto, Japan, October. 2009.

Lee, P. L.; Sullivan, G. R. Generic Model Control (GMC),
Comput. Chem. Engng, n. 12 (6), p. 573-580, 1988.

Lopez, A.M.; Murril, P. W. Controller Tuning Relationships
Based on Integral Performance Criteria,
Instrumentation Technology, n. 14 (11), p. 57. 1967.

Montgomery, D. C.; Runger, G. C. Applied Statistics and
Probability for Engineers, 7th Edition, John Wiley &
Sons. Inc, 2018.

Morari, M. Internal Model Control - Theory and Applications,
IFAC PROCEEDINGS VOLUMES, n. 16 (21), p. 1-18.
1983.

Ogata, K. Engenharia de Controle Moderno, 4ª edição,
Guanabara Dois, Rio de Janeiro. 2003.

Qin, S. J.; Badgwell, T. A. A Survey of Industrial Model
Predictive Control Technology, Control Eng. Practice,
n. 11, p. 733. 2003.

Richalet, J.; Rault, A.; Testud, J. L.; Papon, J. Model Predictive
Heuristic Control: Applications to Industrial Processes,
Automatica, n. 14, p. 413. 1978.

Rivera, D. E.; Morari, M.; Skogestad, S. Internal model control.
4. PID controller design, Ind. Eng. Chem. Process Des.
Dev., n. 25, p. 252-265. 1986.

Rovira, A. A; Murrill, P. W.; Smith, C. L. Tuning Controllers
for Setpoint Changes, Technical Report, DTIC
Document, 1969.

Seborg, D. E.; Mellichamp, D. A.; Edgar, T. F.; Doyle III, F. J.
Process Dynamics and Control, Third Edition, John
Wiley & Sons. Inc, 2011.

Sobota, J.; Pišl, R.; Balda, P.; Schlegel, M. Raspberry Pi and
Arduino Boards in Control Education (I). PROC. OF
THE 10TH IFAC SYMPOSIUM ON ADVANCES IN
CONTROL EDUCATION (ACE2013). Sheffield, UK.
August. 2013.

Úbeda, D.; Gil, A.; Lucas, J. A.; Jiménez, L. M.; Reinoso, Ó.
Ardilla: plataforma de prácticas docentes on-line
mediante Arduino. PROC. OF XXX JORNADAS DE
AUTOMÁTICA, Valladolid, Spain, September. 2009.

Valera, A.; Soriano, A.; Vallés, M. Low-Cost Platforms for
Realization of Mechatronics and Robotics Practical
Works. Revista Iberoamericana de Automática e
Informática Industrial RIAI, n. 11 (4), p. 363-376.
2014.

Warren, J. D.; Adams, J.; Molle, H. Arduino Robotics
(Technology in Action). Apress, USA, 2011.

Zachariadou, K.; Iasemides, K. Y.; Trougkakos, N. Experiences
on using Arduino for laboratory experiments of
Automatic Control and Robotics, IFAC-Papers OnLine
n. 48-29 , p. 105–110. 2015.

Ziegler, J. G.; Nichols, N. B. Optimum settings for automatic
controllers, TRANSACTIONS OF THE ASME. n. 64, p.
759–768. 1942.

