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Abstract 

This paper demonstrated the computational efficiency and accuracy of method of lines for the 

nonlinear transient thermal response analysis of a radiative-radiative porous fin with temperature-

dependent internal heat generation under the influence of magnetic fields.  To establish the 

computational accuracy of the method, the results of the solution are compared with the results of 

the developed exact analytical method. Also, the numerical solutions through the method of lines 

are adopted to explore the impacts of the model parameters on the performance of the passive device. 

It is found that as the conductive-convective, conductive-radiative, and magnetic field parameters 

increase, the fin temperature distribution in the fin decreases. The temperature distribution in the fin 

increases through the fin as the nonlinear thermal conductivity parameter increases. It is hoped that 

the present study gives a good insight into the nonlinear analysis of the extended surface which will 

aid the proper design of the extended surfaces in thermal systems. 

Keywords: Method of lines. Rectangular porous Fin. Nonlinear analysis. Numerical Investigation. 

Thermal studies. 
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Nomenclature 
Acr    Area of the fin cross section, m2 

Bo    magnetic field intensity, Tesla or kg/sec2Amp 

cpa   specific heat capacity, J/kgK 

h     coefficient of convective heat transfer, W/m2K 

Jc    conduction current intensity, A 

k     fin thermal conductivity, W/mK 

kb      fin thermal conductivity at the base temperature, W/mK 

L     fin length, M  

Mc    dimensionless convective parameter 

Nr    dimensionless radiation parameter 

P     fin perimeter, m 

t      time, sec. 

T    fin temperature, K 

T∞   ambient temperature, K 

Tb   fin temperature at the base, K 

x     fin axial distance, m  

X    dimensionless fin length  

 

Greek Symbols 

δ  fin thickness , m 

θ     dimensionless temperature 

θb    dimensionless temperature at the fin base 

ρ     fin material density, kg/m3 

σ   Stefan-Boltzmann constant, W/m2K4 

σ   Electrical conductivity, Ω-1m-1 or sec2Amp2/kgm3 

 

1.  Introduction 

The techno-economically effective cooling of electronics and thermal systems have been achieved 

through the applications of passive devices such as fins [1-7]. The importance of the extended 

surfaces has provoked a large volume of research in literatures. The theoretical investigations of 

thermal damage problems and heat transfer enhancement by the extended surfaces have attest to the 

facts that the controlling thermal models of the passive devices are always nonlinear. Consequently, 

the nonlinear thermal models have been successfully analyzed in the past studies with the aids of 

approximate analytical, semi-analytical, semi-numerical, and numerical methods. In such previous 

studies, Jordan et al. [8] adopted optimal linearization method to solve the nonlinear problems in 

the fin while Kundu and Das [9] utilized Frobenius expanding series method for the analysis of the 

nonlinear thermal model of the fin. Khani et al. [10] and Amirkolaei and Ganji [11] applied 

homotopy analysis method. In a further analysis, Aziz and Bouaziz [12], Sobamowo [13], Ganji et 

al. [14] and Sobamowo et al. [15] employed methods of weighted residual to explore the nonlinear 

thermal behaviour of fins. In another studies, methods of double decomposition and variation of 

parameter were used by Sobamowo [16] and Sobamowo et al. [17], respectively to study the thermal 

characteristics of fins. Also, differential transformation method has been used by some researchers 

such as Moradi and Ahmadikia [18], Sadri et al. [19], Ndlovu and Moitsheki [20], 

Mosayebidarchech et al. [21], Ghasemi et al. [22] and Ganji and Dogonchi [23] to predict the heat 

transfer behaviour in the passive devices. With the help of homotopy perturbation method, 

Sobamowo et al. [24], Arslanturk [25], Ganji et al. [26] and Hoshyar et al. [27] scrutinized the heat 

flow in the extended surfaces. However, these studies are for thermal analysis of fin under assumed 

constant heat transfer coefficient. The cases of heat transfer with variable heat transfer coefficient 

along the passive device varies has also be investigated [28-35]. Such analysis helps in providing 

the needed information on the efficiency, effectiveness, and design date of the extended surfaces 

under various boiling modes [33-44].  
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Although, as pointed out in the review of the previous studies, there are various approximate 

analytical and numerical solutions that gained applications in solving the thermal problems [45-53]. 

The adopted numerical methods in the nonlinear problems involve large computational efforts, time 

and cost while approximate analytical methods involve power series. Indubitably, such power series 

solutions require rigorous solution procedures with inherent large number of terms which are not 

convenient for use in practice [15]. Therefore, the quest for simple method with high accurate 

solutions and prediction cannot be over-emphasized. Moreover, over the years, the simplicity in 

approach of method of lines and its capability in producing high accurate results to nonlinear 

transient thermal analysis of extended surfaces have not been demonstrated in the previous studies. 

Therefore, the present paper focusses on the application of method of lines for numerical 

investigations of an unsteady nonlinear thermal behaviour of a radiative-convective straight porous 

fin with temperature-variant thermal conductivity. The improvements and increased accuracy of the 

prediction as well as the capability of providing good results over a large domain and time by the 

semi-discretization method is demonstrated in the paper. Also, the computational method shown 

simplicity in procedures and obviates the inherent complex mathematical analysis, high 

computational cost, and time in the other methods that have been used to solve the problem. The 

computational results are verified analytically, and excellent agreements are noted. Also, semi-

numerical solutions are used to examine the impacts of the thermal model parameters on 

performance of fin. The results are presented graphically and discussed. 

 

2. Problem formulation 

In Fig. 1, it is consideration is given to a porous fin with temperature-invariant thermal properties 

allowing radiative and convective heat transfer.  

 
Fig. 1 Schematic of convective-radiative longitudinal fin under even magnetic field  

 

To thermally describe the behaviour of the passive device, assumptions is made that the heat flow 

porous medium is filled with fluid of single-phase.  The solid portion of the extended surface is 

homogeneous and isotropic. The fin temperature changes only along its length and the condition of 

a perfect thermal contact between the prime surface and the fin base is assumed.  

 

From the assumptions and with the aid of Darcy’s model, the energy balance is   
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Expansion of the first term in Eq. (1), it provides  
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The initial condition is 

 

when  0,t =  0 ,T T=    for  0 ,x L                                                                                          (3) 

 

The boundary conditions are given as 

 

At 0,x =  0
T

x


=


,  for  0,t                                                                                                      (4a) 

 

At ,x L=  ,bT T=    for  0,t                                                                                                         (4b) 

 

The internal heat general varies linearly with temperature as  

 

( )( )( ) 1a aq T q T T= + −                                                                                                               (5) 

 

When Eq. (5) is substituted into Eq. (2), one arrives at 
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The term T4 can be expressed as a linear function of temperature as 

 

( ) ( )
2

4 4 3 2 3 44 6 ... 4 3a a a a a aT T T T T T T T T T T= + − + − +  −                                                            (7) 

 

Substitution of Eq. (7) into Eq. (6), results in  
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It should be noted that 
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Applying the following dimensionless parameters,  
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One arrives at the dimensionless form of the governing Eq. (10) as 
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and the dimensionless initial is given as 
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and the dimensionless boundary conditions of the fin are  
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we arrived at the dimensionless forms of the governing as follows;  
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and the dimensionless boundary conditions still remain the same as in Equation (14). 

 

3. Method of Lines: Its Computational Advantages 

Method of lines is a semi-discretization method for solving partial differential equations. It is based 

on finite difference method to reduce partial differential equation(s) to systems of ordinary 

differential equations. The method is very simple in the computational approach and possesses 

superiority of stability advantage over the direct finite difference method [54-67]. In this work, the 

method is applied to solve the nonlinear equation.   

 

3.1. Application of Method of Lines the Transient Thermal Problems  

In order to apply the method of lines, the developed dimensionless differential equation (Eq. 17) is 

discretized in the space only as follows: 
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From the initial condition is 
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1( ) 1, at = 1N i N + = +                                                                                                               (21b) 

 

where 

  

N is the number of interior node points used in the discretization of the space, x  
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Which can be written as 
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The resulting ODE is generally of the form 
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Euler’s method is used to solve the system of the nonlinear differential equations. The method is 

stated as follows 
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( ) 2
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h is the time-step 

 

For the linear thermal model, the resulting ODE is generally of the form: 
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Eigen value and Eigen vector method is used to solve the system of the linear differential equations 
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4.  Development of an Exact Analytical Solution for the Thermal Model  

Exact analytical solution for developed ODE (Eq. 17) is also developed for the nonlinear thermal 

model: 
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Eq. (31) is a total differential equation which has a solution of the form 
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where C is the constant of integration 
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Recall that
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Using the first boundary condition,  
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where o  is the dimensionless temperature at the tip. 

When Eq. (34) is substituted into Eq. (33), we have 
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2 3 23 2

2 2 2 20 0
0

1
1

2 3 3 4 4

d
Ra Mc Nr Mc Q H Mc Q M Nr

dX

   
  

    
= − − − − + − − + − + −    

        

(36) 
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Eq. (36) is expressed as  

( ) ( )( ) ( ) 
3 23 2

2 2 2 20 0
0

2

1
3 3 4 4

d
dX

Ra Mc Nr Mc Q H Mc Q M Nr



  
  

=
     

+ + − − − − − − + −    
     

     

                                                                                                                                                 (37) 

Integrating both sides of the Eq. (37), provides
 

 

( ) ( )( ) ( ) 
3 23 2

2 2 2 20 0
0

2

1
3 3 4 4

d
X C

Ra Mc Nr Mc Q H Mc Q M Nr



  
  

= +
     

+ + − − − − − − + −    
     


      

(38) 

 

Where the arbitrary constantC  is found from 

 

0, 0 e

d
X

dX


 = = → =                                                                                                   (39) 

 

suppose that 

 

( ) ( )

( ) ( )( ) ( ) 
3 23 2

2 2 2 20 0
0

; , , , , ; , , ,

1
3 3 4 4

o h oG Ra Mc H Q G Ra N Q

d

Ra Mc Nr Mc Q H Mc Q M Nr

   



  
  

=

=
     

+ + − − − − − − + −    
     

      (40) 

 

where 

2 2, hN Mc Nr Q Mc Q H= + = −                                                                                                 (41) 

The integral in Eq. (40) is expressible (e.g. via Wolfram’s Mathematica) in term of incomplete 

elliptic integrals of the first kind. For instant  
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( )

1 1 1 1
2

1 1 1 1

2

1 1 1 1 1
3

1 1 1 1 1

2 3

3 6 3 6 3 6 2
,

2 3 6

3 2 4 3 2 4 3 2 4 2;1,1,1, 3 ,
3 6 2 3 6

o o o

o

o o o
o o

o o

EllipticF

G EllipticF

      


    

              
      

 

   + + − − + + +
   

+ +   
  
  + + + − − + + + + + =  − −  + +  + +   
 
 
  

  

                                                                                                                                                     (42) 

where 

2

1

3 2 3 2

2

2

3

57 12 12

6 18 9 6 18 9

2 2 2

o o

o o o

o o

  

      

  

= − −

= − + − + −

= − −

 

( )( ) ( )

( )( ) ( )

2 1 11

11

2

2 2 11 1 11 1

11 1 1 1 1

3 63 6

22

2 2 1 2 3 ... 2 2 13 6 3 6 3 62 22 1
,

2 3 6 2 2 3 6 2 1 2 ... 2

n oo

n

n ko o o

k
no o

sincos

n n n n kn
EllipticF sin

n n n n k

  



      

      

−


− −

=

 + + + +
 −    
  

     − − − ++ + + + + +− 
= + +         + + + + − − −      



( )

1

1 1

1

1

2 1 !! 3 6

2 ! 2

n

n k

o

n

n

n

 



 −

= =

   
   
   
   
   

   
   
  

 − + +  +     
   

 

 

Therefore, the closed-form solution of Eq. (17) can be implicitly expressed as  

 

( ); , , ,h oX G Ra N Q =
                                                                                                               

(43) 

 

It should be stated that the unknown θo in the closed-form solution is found from the following 

boundary condition  

 

( ) ( )0, 1 0 1; , , , 1; , , , 0h o h oX G Ra N Q G Ra N Q  = = → = → =  

 

This means that for any given N, Ra and Q,  θo is obtained from 

 

( )1; , , , 0h oG Ra N Q  =
                                                                                                                 

(44) 
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With the aid of Wolfram’s Mathematica, the computations of the function ( ); , , ,h oG Ra N Q   are 

carried out. 

 

5. Results and Discussion 

The numerical solutions are simulated using MATLAB and the parametric as well as sensitivity 

analyses are carried out using the codes. The results of the MOL are verified with the results of the 

exact analytical method as presented in Tables 1.  It is shown from the Table that MOL is a very 

convenient mathematical method for the analysis of nonlinear fin thermal models. 

 

 

Table 1: Comparative of results via MOL with Exact and NUM for θ(X) when Rd = 0.5, 𝛆 = 0.1, 

Ra = 0.4, Nc = 0.3, Nr = 0.2, H= 0.1 

X Exact MOL 

0.0 0.86349907 0.86349932 

0.1 0.86481693 0.86481718 

0.2 0.86877611 0.86877635 

0.3 0.87539328 0.87539346 

0.4 0.88469639 0.88469654 

0.5 0.89672597 0.89672617 

0.6 0.91153054 0.91153085 

0.7 0.92917693 0.92917724 

0.8 0.94974112 0.94974143 

0.9 0.97331368 0.97331389 

1.0 1.00000000 1.00000000 

 

 

The significance of various parameters of the nonlinear model on the thermal management 

enhancement of thermal systems using the solutions presented are graphical represented for pictorial 

discussion in Figures 2-6. It is shown in Figures 2 and 3 that that when the conductive-radiative and 

conductive-convective increased, the dimensionless fin temperature decreases which leads to 

increase in heat transfer rate through the fin and the thermal efficiency of the fin.  

 

 This means that the local temperature in the extended surface increases as the conduction-

convection convection-radiative parameters increase. The low value of the convective-conductive 

and radiative-conductive parameters, Nc and Nr implies a relatively thick and short fin of very high 

thermal conductivity while a high value of the convective-conductive and radiative-conductive 

parameters indicates a relatively thin and long fin of a very low thermal conductivity. Therefore, the 

thermal efficiency of the fin is favoured at low values of convective-conductive and radiative-

conductive parameters, i.e., a relatively thick and short fin with a high thermal conductivity. 
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Fig. 2  Effects of convective-conductive 

parameter on fin temperature 

 

Fig. 3 Effects of radiative-conducitve 

parameter on fin temperature 

  
Fig. 4 Effect of  the fin thermal conductivity 

factor on its temperature 

 

Fig. 5  Fin temperature for different time 

evolution 

 
Fig. 6  Fin temperature history at various locations in the material 
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The thermal response of the fin to the variation of the thermal conductivity of the fin material is 

shown in Fig. 4.  It is shown that the fin temperature is amplified as the thermal conductivity is 

augmented due to an increase in the fin local temperature which reduces the fin capacity to dissipate 

heat to the environment. The temperature profiles of the fin at different time evolutions are displayed 

in Fig. 5 while Fig. 6 presents the temperature histories of the extended surfaces at different positions 

in the material. The fin temperature increases at the different positions as the heating time 

progresses.  

 

5. Conclusion 

In this work, the potency of method of lines for the prediction of heat transfer characteristics of a 

convective-radiative solid fin with temperature-invariant thermal conductivity has been 

demonstrated. It has been shown that the computational method gives accurate results with high 

convergence and small error and without the computational burden like pure finite difference, finite 

element, finite volume and finite analytic methods. Therefore, the versality of the method of lines 

for solving linear and nonlinear PDEs is again established in this study. Also, form the solution of 

the method, the effect of various parameters of the nonlinear model on the thermal management 

enhancement of thermal systems were explored. The graphical representation of the thermal 

behaviour of the extended surfaces has been presented and the results have been discussed. The 

study has showed that when the conductive-radiative and conductive-convective parameters 

increased, the dimensionless fin temperature decreases which leads to increase in heat transfer rate 

through the fin and the thermal efficiency of the porous fin.  The thermal efficiency and effectiveness 

of the fin is favoured at low values of conductive-radiative and conductive-convective parameters 

of the extended surfaces. This study will assist in proper thermal analysis of fins and in the design 

of passive heat enhancement devices used for thermal and electronic systems.  The result of the 

study will help in the passive device design. 
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