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In silico study was carried on a dataset of 1,2,4-Triazole derivatives to investigate their 
activities behaviour on mycobacterium tuberculosis by utilizing Quantitative Structure-
Activity Relationship (QSAR) technique. Genetic Function Algorithm (GFA) and Multiple 
Linear Regression Analysis (MLRA) were used to select the optimum descriptors and to 
generate the correlation QSAR model that relate their activities values against mycobacterium 
tuberculosis with the molecular structures of the inhibitors. The model was validated and was 
found to have squared correlation coefficient (R2) of 0.9134, adjusted squared correlation 
coefficient (Radj) of 0.8753 and Leave one out (LOO) cross validation coefficient (Qcv^2) value 
of 0.8231. The external validation set used for confirming the predictive power of the model 
has R2pred of 0.7482. Stability and robustness of the model obtained by the validation test 
indicate that the model can be used to design and synthesis other 1,2,4-Triazole derivatives 
with improved anti-mycobacterium tuberculosis activities. 
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1. INTRODUCTION  

Tuberculosis (TB) is infectious disease caused by 
Mycobacterium tuberculosis. About 2.5 billion people were 
infected with tuberculosis worldwide and mortality of 
approximately 1.5 million people were reported annually (Jham 
et al., 2014; Lönnroth et al., 2010). Despite the availability of 
tuberculosis first-line drug; ethambutol (EMB), rifampicin 
(RIF), pyrazinamide (PZA), streptomycin (STP) and isoniazid 
(INH); the increase in the incidence of both multidrug-resistant 
(MDR-TB) and extensively drug-resistant tuberculosis (XDR-
TB) are observed (Aziz et al., 2006; Balabanova et al., 2005). 
Furthermore, treatment requiring the use of these drugs has been 
reported to cause serious side effects such as: thrombocytopenia 
occurring as a result of rifampicin (RIF) (Yakar et al., 2013), 
neuropathy is caused by isoniazid while biggest problem  
associated with hepatitis (Abideen et al., 2013). Considering 
these effect, the synthesis of new compounds with anti-
tuberculosis activity has been the target of many medicinal 
chemistry and pharmacist. 

Recently, a novel series of 1,2,4-Triazole derivatives has 
been identified and reported as inhibitors against of  M. 
tuberculosis (Sarkar et al., 2016). The advent of computational 
chemistry and knowledge of theoretical chemistry led to 
challenges of drug discovery (Cramer, Patterson and Bunce, 
1988).  

QSAR as computational tool establish a relationship 
between various molecular properties of molecules and their 
activities (Ibezim et al., 2009).  The application of Quantitative 
Structure Activity Relationship (QSAR) technique has potential 
to minimize effort and time required to discover new 
compounds or to improve current ones in terms of their 
efficiency.  

The aim of this research was to develop QSAR model 
using Genetic Function Algorithm (GFA) for variable selection 
of descriptors and multiple linear regression (MLR) method for 
predicting the activity of 1,2,4-Triazole derivatives as potent 
anti-mycobacterium tuberculosis. 

2. MATERIALS AND METHOD 

2.1 Data set 

The derivatives of 1,2,4-Triazole derivatives as  potent 
anti-mycobacterium tuberculosis that were used in this research 
were selected from the literature (Sarkar et al., 2016). The anti-
mycobacterium tuberculosis were expressed in percentage (%) 
and later converted to logarithm scale using the Equation (1) 
below in order to increase the linear response, reduce the 
dispersion and approach normal distribution. The general 
formula and chemical structures alongside with their biological 
activities of these compounds were presented Table A1. 
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2.2 Molecular structure optimization and descriptors 
calculation 

Molecular structures of the dataset compounds were 
optimized using the Density Function Theory (DFT) with basic 
(B3LYP/631G*) by employing Spartan 14. The optimized 

structures were imported into PaDEL-Descriptors software to 
calculate about 1875 molecular descriptors. The calculated 
descriptors and the activity values of the compounds were 
arranged in n × m matrix format to constitute the data used for 
the QSAR study. Where n is the number of molecules and m is 
the number of descriptors.  

2.3 Descriptors transformation 

In QSAR analysis, model is usually biased toward 
descriptor with high positive or negative values. To overcome 
this bias, molecular descriptors of the training set data were 
transformed by normalization (Tropsha, 2010) using the 
equation below; 

12 = 3.3�453�45.3�67  (2) 

In equation 2, xn is the normalized descriptor, xmax is the 
maximum value in a descriptor column and xmin is the minimum 
value in the column. 

2.4 Data pretreatment 

The data set were subjected to pretreatment using Data 
Pretreatment software obtained from Drug Theoretical and 
Cheminformatics Laboratory (DTC Lab) in order to remove 
redundant data. In the dataset matrix, all descriptors column with 
constant or near constant values were deleted. Also, anyone 
column with variance less than 0.001 was deleted from the 
descriptor pool. Correlation analysis was performed on the 
dataset and one descriptor of any pair with a correlation greater 
than 0.8 was discarded.  

2.5 Generation of training set and test set 

In order to obtain validated QSAR model, the dataset was 
divided into training and test set using Data Division software 
obtained from Drug Theoretical and Cheminformatics 
Laboratory (DTC Lab) by employing Kennard and Stone’s 
algorithm (Kennard and Stone, 1969). This algorithm has been 
applied with great success in many recent QSAR studies and has 
been highlighted as one of the best ways to build training and 
test set (Afantitis et al., 2006; Chakraborti et al., 2003; Khaled, 
2011; Melagraki et al, 2006; Wu et al., 1996). In this algorithm, 
two compounds with the largest Euclidean distance apart were 
initially selected for the training set. The remaining compounds 
for the training set were selected by maximizing the minimum 
distance between these two compounds and the rest of the 
compounds in the dataset. This process continues until the 
desired number of compounds needed for the training set have 
been selected then, the remaining compounds in the dataset 
would be used as the test set (Kennard and Stone, 1969). The 
algorithm employs Euclidean distance EDX (p, q), between the 
x vectors of each pair (p, q) of samples to ensure a uniform 
distribution of such a subset along the x data space. 

89:)�, <+ = =∑ ?1@)A+ − 1C)A+DEFG, H  , � I < ∈ [1, M]  (3) 

N is the number variables in x, and M is the number of samples 
while xp (j) and xq (j) are the jth variable for samples p and q 
respectively. The training set was used to generate the model, 
while the test set were used for the external validation of the 
model 
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2.6 Selection of optimal descriptors  

Genetic Function Algorithm (GFA) incorporated in 
Material Studio software version 8.0 was used to select 
combination of descriptors that best correlate the structure of the 
inhibitory compounds with their respective activities. GFA is a 
heuristic search method that finds exact or approximate 
solutions to any optimization and search problems (Rogers and  
Hopfinger, 1994). It has the advantage of producing more than 
one combination of descriptors using lack of fit function to 
eliminate over fitting and gave user control over length of 
equation. 

2.7 Model construction and validation 

The optimum descriptors combinations selected by GFA 
were obtained for both training set from the descriptor pool. 
Their anti-tubercular activities were placed as the last column in 
their respective spread sheets which were imported into the in 
Material Studio software version 8.0 to generate the model and 
to evaluate the internal validation parameters while the test set 
was used to validate the built model. 

2.8 Relative importance of each descriptor in the model 

Absolute value of the mean effect of each descriptor was 
used to evaluate the relative importance and contribution of the 
descriptor to the model. The mean effect is defined as; 

M8 = OP  ∑ �P76∑ QOP  ∑ �P76 R�P   (4) 

Where ME is the mean effect of a descriptor j in a model, βj is 
the coefficient of the descriptor j in that model, Dj is the value 
of the each descriptor in the data matrix for each molecule in the 
training set and m is the number of descriptor that appear in the 
model and n is the number of molecules in the training set 
(Minovski et al., 2013) 

2.9 Models applicability domain 

Leverage approach that utilizes Williams plot was 
employed to define the applicability domain of the models and 
to determine the influential molecule (Tropsha et al, 2003). 
Williams plot for a model is a graphical view of leverage values 
for each molecule in the entire data set versus their standardized 
cross validated residual obtained by the model. The leverage (hi) 
value for each molecule is obtained has the diagonal elements of 
the hat matrix constructed for both training set and test set. 
Leverage of a given chemical compound hi, is defined as 
follows; 

ℎ� = T�)TUT+.,T�U  (5) 

Where Xi is training compounds matrix of i.  X is the m× k 
descriptor matrix of the training set compound and TU  is the 
transpose matrix of X used to build the model. The warning 
leverage (h*) is the boundary of values for X outliers and is 
defined as:  

ℎ∗ = 3 )XY,+
Z   (6) 

Where m is the descriptors and d is the compound that made up 
the training set. 

 

 

2.10 Y-Randomization test  

Y-Randomization test is another useful external 
validation parameter to confirm that the built QSAR model is 
strong and not inferred by chance. To be assured that the built 
QSAR model is strong, reliable  and not obtained by chance, the 
Y-randomization test was carried out on the compound that 
made up the training set (Tropsha et al., 2003). For the built 
QSAR model to robust and reliable, the model is expected to 
have a low R2 and Q2 values for several trials. Coefficient of 
determination (c[@H ) for Y-randomization is another parameter 
calculated which should be greater than 0.5 for passing this test.  

\[@H = [ ×  [[H  −  )[�+H]H  (7) 

c[@H is Coefficient of determination for Y-randomization, R is 
coefficient of determination for Y-randomization and Rr is 
average ‘R’ of random models. 

3. RESULTS AND DISCUSSION  

In silico study was carried to develop a QSAR model that 
could relate the structure of 1, 2, 4-Triazole derivatives with 
their biological activities against M. tuberculosis. 

Experimental and Predicted activities of 1, 2, 4-Triazole 
derivatives and the residual values were presented in Table 1. 
The low residual value between Experimental and Predicted 
activities indicates that the model has a good predictive power. 

The Genetic Function Algorithm (GFA) method 
employed in this study led to the selection of three descriptors 
which were used to build a model for calculating the predicted 
activities against M. tuberculosis. 

3.1 QSAR model generated 

The QSAR model generated by the combinations of 
methods used in the study is presented below: 

pBA =   - 0.314545676 (AATS7s) + 0.016884210 (TDB9e) + 
 0.09032096 (RDF90i) +  4.023544336           (8) 

All the validation parameters to confirm the stability, 
robustness and predictive ability of the model generated were 
reported in in Table 1. 

The name and symbol of the three descriptors used in 
generating the QSAR model were reported in Table 2. The 
presence of 3D and 2D descriptors in the model suggest that 
these types of descriptors were able to characterize better anti-
mycobacterium tuberculosis activities.  

Pearson’s correlation and statistics of the three 
descriptors used in the QSAR model were reported in Table 3 
which shows clearly that the correlation coefficients between 
each descriptor is very low thus, it can be inferred that there is 
no significant inter-correlation among the descriptors used in 
building the model. The Variance Inflation Factor (VIF) value 
for each the descriptor in the model was less than 4 which imply 
that the Model was statistically significant and the descriptors 
were orthogonal. The signs and the magnitude of these 
descriptors combined with their mean effects indicate their 
individual strength and direction in influencing the activity of a 
compound. The null hypothesis says there is no significant 
relationship between the activities of the inhibitor molecules and 
the descriptors used in building the model at p  >  0.05. The P-
values of the descriptors in the model at 95% confidence limit 
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shown in Table 3 are all less than 0.05. This implies that the null 
hypothesis is rejected. Thus we accepted the alternative 
hypothesis. Hence we infer that there is a significant relationship 
between the activities of the inhibitor molecules and descriptors 
used in building the model at p < 0.05. 

Y- Randomization parameter test were reported in Table 
4. The low R2 and Q2 values for several trials assured that the 
developed QSAR model is robust, stable and reliable. While the 
c[@ H  value greater than 0.5 satisfied that the built model is 
powerful and not inferred by chance. 
 

Table 1 – Internal and External validation parameters for the QASR model generated 
Parameter Formula Threshold Model score comment Reference 

Internal  validation ]^ _∑ `)Y − Yb+ × �Yc − Ycb�deH

∑QY − YcRH × ∑�Yc − Ycb�H  

RH > 0.6 0.9134 passed (Tropsha, 2010) 

]klm^  )N − 1+ ×  RH −  pN − 1 − p  
R'pqH > 0.6 0.8753 passed 

r^ 1 − ∑QY − YcsttRH
∑)Y − Yb+H  

QH > 0.6 0.8231 Passed 

v)w,xy+ ∑)Y − Yb+H
p ∑QY − YcRH

N − p − 1z  
F)&"|&+ > 2.09 34.94 Passed  

Random model �b� an average of the correlation 
coefficient for randomized data 

Rb < 0.5 0.4343 passed (Tropsha, 2010) 

�b �̂ an average of determination 
coefficient for randomized data 

[��H < 0.5 0.2445 Passed 

�b �̂ an average of leave one out cross-
validated determination coefficient 
for randomized data 

���H < 0.5 -0.7143 Passed 

c]�̂ RH ×  �1 − =|RH − Rb#H| � 
cR!H > 0.6 0.7542 Passed (Roy, 2007) 

External validation ]���l^  1 −  ∑QY"�& − Yc"�&RH
∑)Y"�& − Yb+H  

R!#"pH > 0.6 0.7482 Passed  

 

Table 2 – List of some descriptors used in the QSAR 
optimization model 
S/NO Descriptors 

symbols 
Name of descriptor(s) Class 

1 
 

AATS7s Average Broto-Moreau 
autocorrelation - lag 7 / 

weighted by I-state 

2D 

2 TDB9e 3D topological distance 
based autocorrelation - lag 9 

/ weighted by Sanderson 
electro negativities 

3D 

3 RDF90i Radial distribution function - 
090 / weighted by relative 
first ionization potential 

3D 

Table 3 – Pearson’s correlation and statistics for descriptor 
used in the QSAR model 

Inter- correlation                                                     Statistics 

AATS7
s 

TDB9e RDF90i P- Value 
(Confidenc
e interval) 

VIF Mean 
Effect    
(ME) 

AATS7
s 

1  0.00043 1.232
1 

-
0.654

3 
TDB9e -

0.19822 
1 0.00032 2.422

1 
0.543

3 
RDF90i 0.23814 -

0.45338 
0.00012 2.043

2 
0.761

2 

 

Table 4: Y- Randomization Parameter test 
Model R R^2 Q^2 

Original 0.9132 0.8751 0.8228 

Random 1 0.3454 0.1193 -1.0841 

Random 2 0.4868 0.2370 -1.0985 

Random 3 0.4408 0.1943 -0.9815 

Random 4 0.5575 0.3108 -0.5503 

Random 5 0.2957 0.0874 -1.1088 

Random 6 0.5562 0.3093 -0.7285 

Random 7 0.7724 0.5966 0.0328 

Random 8 0.2752 0.0757 -1.1166 

Random 9 0.74823 0.5598 -0.0362 

Random 10 0.5557 0.3088 -0.4448 

Random Models Parameters 
 

Average r : 0.4343 
  

Average r^2 : 0.2445 
  

Average Q^2: -0.7134 
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3.2 Interpretation of selected descriptors 

AATS7s is Average Broto-Moreau autocorrelation - lag 
7 / weighted by I-state auto-correlation descriptor. It’s based on 
spatial dependent autocorrelation function which measures the 
strength of the relationship between observations (atomic or 
molecular properties) and space separating them (lag). This 
descriptor is obtained by taking the molecule atoms as the set of 
discrete points in space and an atomic property as the function 
evaluated at those points. When this descriptor is calculated on 
molecular graph, the lag coincides with the topological distance 
between any pair of the vertices. AATS7s is defined on the 
molecular graphs using atomic masses (m), Sanderson 
electronegativity (e) and inductive effect of pairs of atoms 7 
bond apart as the weighting scheme. These observations 
suggested that atomic masses and electronic distribution of the 
atoms that made up the molecule had significant effect on the 
anti-tubercular activity of the dataset. In addition, the signs of 
the regression coefficients for each descriptor indicated the 
direction of influence of the descriptors in the models such that, 
positive regression coefficient associated to a descriptor will 
augment the activity profile of a compound while the negative 
coefficient will diminish the activity of the compound.  

TDB9e (3D topological distance based autocorrelation - 
lag 9 / weighted by Sanderson electro negativities). It is 
positively correlated to the anticonvulsant activity meaning that 
increase in its value augments the activity of the studied 
compounds.  

The descriptor measures the strength of the connection 
between atomic charges 9 bonds apart. The number of ring in 
the molecular system tends to increase the values of this 
descriptor as observed for molecules. This may be due to 
increase in the amount of π-electrons in the molecular system 
bringing about increase in the charge difference between atoms 
9-bonds apart. The positive mean effect indicates a positive 
impact on the activity of the inhibitory compounds, which 
means increasing the value of this descriptor, produces higher 
activity of these compounds. 

RDF90i is a radial distribution function at 2.5 and 7.0 
inter-atomic distance weighted by atomic masses. The radial 
distribution function is probability distribution to find an atom 
in a spherical volume of radius. RDF descriptors are 
independent of the size and rotation of the entire molecule. They 
describe the steric hindrance or the structure-activity properties 
of a molecule. The RDF descriptor provides valuable 
information about the bond distances, ring types, planar and 
non-planar systems, and atom types. The presence of these 
descriptors in the model suggested the occurrence of a linear 
relationship between anti-tubercular activity and the 3D 
molecular distribution of atomic masses in the molecules 
calculated at radius of 2.0 Å and 7.0 Å from the geometrical 
centers of each molecule. RDF90i with positive mean effect 
(MF) indicates positive impact on the activity while RDF110s 
with negative mean effect (MF) indicates negative contribution 
on the activity. 

Plot of predicted activity against experimental activity of 
training and test set where shown in Figure 1 and Figure 2 
respectively. The R2 value of 0.9134 for training  set and R2 
value of 0.7482 for test set reported in this study was in 
agreement with Genetic Function Approxation (GFA) derived 
R2 value reported in Table 1. This confirms the robustness and 
reliability of the model. Plot of standardized residual versus 

experimental activity shown in Figure 3 indicates that there was 
no systematic error in the model built as the spread of 
standardized residual values were on both sides of zero. 

 

Figure 1 – Plot of predicted activity against experimental 
activity of training set 

 

Figure 2 – Plot of predicted activity against experimental 
activity of test set 

 

Figure 3: Plot of residual values versus experimental 
activity  

The leverage values for the entire compounds in the 
dataset were plotted against their standardized residual values 
leading to discovery of outliers and influential compound in the 
models. The Williams plot of the standardized residuals versus 
the leverage value is shown in Figure 4. From our result it is 
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evident that all the compounds were within the square area ±3 
of standardized cross-validated residual produced by the model.  
Therefore no compound is said to be an outlier. However, only 
compound (number 4) is said to be an influencial compound 
since its leverage value is greater than the warning leverage (h* 
= 0.80). This was attributed to difference in its molecular 
structure compared to other compounds in the dataset. 

 

Figure 4: Plot of Standardized residual activity versus 
leverage 

4. CONCLUSION 

QSAR analysis on a series of 1,2,4-Triazole derivatives 
was carried out using the GFA technique. The internal and 
external validation test for the QSAR model generated was in 
agreement with recommended value of validation parameters 
for a generally acceptable QSAR model. Thus the descriptors; 
AATS7s, TDB9e and RDF90i in the built model are important 
descriptors to determine the activity of the compounds to 
function as effective mycobacterium tuberculosis inhibitors.  

This knowledge can be used for designing more effective 
chemical entities and may also provide important insights into 
structural variants leading to the development of novel 
tuberculosis inhibitors. 
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APENDIX A 

Table A1 – Molecular structure of 1, 2, 4-Triazole derivatives and their activities as potent anti-mycobacterium tuberculosis. 

S/N 
Molecules 

superscript a represent the test set 
Experimental Activity 

(pBA) 
Predicted 

Activity (pBA) 
Residual 

1 a 

 

6.3456 6.339078 0.006522 

2 

 

7.4134 7.50969 -0.09629 

3 NHN

N S

 

6.4171 6.42649 -0.00939 

4 

 

7.6397 7.459252 0.180448 

5 

 

8.0899 8.059256 0.030644 

6 a 

 

7.366 7.42033 -0.05433 

7 

 

7.0123 6.89972 0.11258 

8 a 

 

6.5267 6.75046 -0.22376 

9 a 

 

7.3233 7.326721 -0.00342 

10 

 

7.3279 7.42522 -0.09732 
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11 

 

6.8568 6.776661 0.080139 

12 

 

7.3079 7.270438 0.037462 

13 

 

7.314 7.248722 0.065278 

14 

 

8.5854 8.66399 -0.07859 

15 

 

8.0615 8.12506 -0.06356 

16 

 

8.0615 7.972504 0.088996 

17 

 

6.8494 6.99939 -0.14999 

18 a 

 

7.9432 7.934651 0.008549 

19 

 

7.4535 7.444966 0.008534 

20 

 

7.9759 8.01127 -0.03537 

21 a 

 

7.9759 8.05262 -0.07672 

22 a 

 

7.9294 7.852469 0.076931 
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Where superscript a represent the test set 
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