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 Quantitative structure-activity relationship study was done on some quinazoline-4(3H)-ones 
derivatives with anticonvulsant activity against maximal electroshock-induced seizure. The 
quinazoline derivatives used as dataset and their anticonvulsant activity value were obtained 
from the literature. The molecular structure of the dataset compounds was generated with 
Spartan 14 software. This was optimized with PM3 semi-empirical quantum mechanical 
method available in the software. Molecular descriptors were obtained from the optimized 
structures using the PaDEL-Descriptor software. Activity values of the compounds and 
molecular descriptors obtained from the optimized structure made up the database for the 
study. The database was divided into training and test sets with Kennard Stone algorithm. 
Genetic function algorithm was used to develop quantitative structure-activity relationship 
models. The best model obtained was stable, robust and had good statistical parameters 
including determination coefficient R2 (0.899), adjusted determination coefficient R2

adj 
(0.888), variance ratio F (82.03), leave one out cross-validated determination coefficient Q2 
(0.866) and predicted determination coefficient for the test set R2

pred (0.7406). The model 
indicated that the anticonvulsant activity of the studied compounds was dependent on Broto-
Moreau autocorrelation-lag2/weighted by Vander Waals volume (ATS2v), average coefficient 
sum of the last eigenvector from Barysz matrix/weighted by Vander Waals volume (VE2_DZv), 
largest absolute eigenvalue of Burden matrix-6/weighted by relative atomic mass 
(SpMax6_Bhm), average valence path of order 6  and  radial distribution function at 4.5 
interatomic distance weighted by first ionization potential (RDF45i). 
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1. INTRODUCTION  

Epilepsy comprises a group of disorders characterized by 
the periodic and abnormal discharge of nervous tissue. It often 
manifests as violent involuntary muscle contractions and 
convulsions a phenomenon known as a seizure. Seizures can 
have many causes and constitute evidence of an underlying 
neurologic disorder. It is reported to affect about 50 million 
individuals worldwide of which about 10.5 million are children 
and almost 90% of these people are in the developing countries 
(THIRUMURUGAN et al., 2006). Pharmacological 
management remains the primary method to treat epilepsy and 
many chemical agents known as antiepileptic drugs (AEDs) 
have been developed. However, despite the development these 
AEDs over 30% of people with epilepsy do not have seizure 
control and others do so only at the expense of significant dose-
related toxicity and other adverse effects (BROWN AND 
HOLMES, 2001; KRAMER, 2001). Therefore, the search for 
new anticonvulsant drugs with fewer side effects has been 
continuous. 

Quinazolinone ring system has been reported to have 
wide range of biological properties including antitumor, anti-
HIV, selective estrogen beta modulator, anti-inflammatory, 
antibacterial, antidepressant and central nervous system 
depressant activities (BAVETSIAS et al., 2007; AL-
RASHOOD et al., 2006; ALAGARSAMY et al., 2007; 
GÜNGÖR et al., 2006). This ring system is considered as an 
interesting moiety and many derivatives substituted by different 
heterocyclic moieties at 3rd position of their heterocyclic system 
has been reported to exhibit anticonvulsant property with 
reduced toxicity (EL-HAKIM et al., 1994; EL-NASER-
OSSMAN et al., 1994).  

The objective of the present study is to perform 
quantitative structure-activity relationship study (QSAR) on 
some newly synthesis quinazoline-4(3H)-ones derivatives 
reported in literature (GEORGEY et al., 2008; MOHAMED, 
2014) to possess anticonvulsant activity against maximal 
electroshock-induced seizure (MES). This was done to gain 
insight into factors that influence the activity of the studied 
compounds and provide a rationale for designing new 
compounds with improved activity value. QSAR analysis is an 
area of computational research concern with establishing a 
mathematical relationship between a quantitative measure of 
chemical structure (molecular descriptors) and a biological 
activity (ROY AND GHOSH, 2010). It has played an essential 
role in the development of compounds in medicinal chemistry, 
pharmaceutical. designs, drug metabolism and optimization of 
the molecular structure with defined purpose (SPECK-
PLANCHE AND CORDEIRO, 2012). 

2. MATERIAL AND METHODS 

2.1 Database development 

The dataset comprises derivatives of quinazoline-4(3H)-
ones obtained from literature concerned only with the synthesis 
of the derivatives and their pharmacological test using similar 
assay (GEORGEY et al., 2008; ARCHANA et al., 2004; 
MOHAMED, 2014). The assay used was maximal electroshock 
seizure (MES) test on mice and compounds anticonvulsant 
activity values were reported as percent protection. This was 
recalculated to the logarithmic unit for comparability between 

compounds and linear correlation of the activity value to free 
energy change (GRAMATICAL et al., 2012; NOOLVI et al., 
2010). Logit transform was used to convert the activity value to 
logarithm unit: 

�� = Log ��	
 � % ��������������% ������������  (1) 

In equation 1, MW is the molecular weight of the 
compound and d is the dose in mg/kg. Molecular structure and 
anticonvulsant activities in logarithm unit for the dataset 
compounds are presented in Table 1. 

Table 1 Molecular structure of quinazoline-4(3H)-one 
derivative and anticonvulsant activities 

S/N Compound Structure/Name BA 
*1 

 

6.687 

2 

 

6.807 

3 

 

7.018 

4 

 

7.281 

5 

 

6.964 

6 

 

7.172 

*7 

 

7.099 

*8 

 

7.499 

9 

 

7.308 

10 

 

7.293 

11 

 

7.321 

12 

 

7.517  

13 

 

7.358 

14 

 

7.577 
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Continued Table 1 
S/N Compound Structure/Name BA 

15 

 

7.385 

16 

 

7.564 

17 

 

7.588 

18 

 

7.591 

19 

 

7.353 

20 

 

7.573 

21 

 

7.573 

22 

 

7.794 

23 

 

7.584 

*24 

 

7.821 

25 

 

7.483 

*26 

 

7.146 

*27 

 

7.873 

*28 

 

7.862 

29 

 

7.882 

30 

 

8.237 

31 

 

7.459 

*32 

 

7.352 

 

Continued Table 1 
S/N Compound Structure/Name BA 

33 

 

6.673 

*34 

 

7.424 

*35 

 

6.997 

36 

 

7.621 

37 

 

7.866 

38 

 

8.266 

*39 

 

8.262 

*40 

 

8.013 

41 

 

7.834 

*42 

 

7.306 

43 

 

7.860 

44 

 

7.172 

45 

 

7.222 

46 

 

7.622 

*47 

 

7.354 

48 

 

7.355 

49 

 

7.476 
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Continued Table 1 
S/N Compound Structure/Name BA 

50 

 

7.497 

*51 

 

7.465 

52 

 

6.509 

53 

 

6.777 

*54 

 

6.983 

55 

 

7.611 

56 

 

7.672 

57 

 

7.364 

58 

 

7.469 

59 

 

7.624 

*60 

 

7.918 

61 

 

7.414 

62 

 

7.013 

63 

 

7.331 

64 

 

7.635 

65 

 

7.404 

 

 

Continued Table 1 
S/N Compound Structure/Name BA 

66 

 

7.659 

67 

 

7.171 

68 

 

7.647 

69 

 

7.844 

*70 

 

8.257 

Data used as the test set are designated with asterisk *, BA is the 
anticonvulsant activities in logarithm unit 

2.2 Molecular structure generation and descriptor 
calculation 

With the specific end goal of developing QSAR model 
that can predict accurately the anticonvulsant activities of the 
data set molecules, the 3D structure of the dataset molecules was 
generated with Spartan 14 software (SHAO et al, 2006)  and 
their geometry optimized with the semi-empirical quantum 
mechanical method available in the software. Optimization was 
performed until the root mean square (RMS) gradient for each 
compound was smaller than 10-6(au). This was done to give a 
better description of dataset compounds molecular orbital wave-
function and obtain reliable data on electronic properties of each 
compound (GAVERNET et al., 2007; CHOUDHARY AND 
SHARMA, 2014). The optimized structures were ported to 
PaDEL-Descriptor software (YAP, 2011) to compute around 
1875 different physicochemical, topological and structural 
molecular descriptors. The activity values and the descriptor 
constitute the database for the study.  

2.3 Database division 

The database comprises of activity value and descriptors 
for compounds arranged in a n×m matrix where n is the number 
of compounds and m the number of descriptors. It was divided 
into training and test sets with Kennard and Stone algorithm 
available in Datasetdivision 1.2 software (AMBURE et al., 
2015). This algorithm was reported to produce excellent dataset 
division results (ROY et al., 2008; ROY, 2007). The algorithm 
proceeded by finding the Euclidean distances dij  between the 
molecular descriptor vectors of each pair of compounds i, j: 

d�� =  �� − �"� =  #∑ %x�' − x�'()*'+�    (2) 

In equation 14, k is the number of descriptors, xik, xjk 
were similar descriptor contained in the X i, Xj descriptor vector 
respectively. Once the distances had been calculated, two 
compounds that were farthest apart in terms of the measured 
distance were selected i.e. the pair I, J with the largest value of 
dij. Compounds that exhibit the largest minimum distance with 
respect to the two previously selected compounds were selected 
and placed in the training set. These steps were repeated until 
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the desired number of compounds had been added to the training 
set and the remaining compounds were used as the test set 
(KENNARD AND STONE 1976). 

2.4 Variable selection/model development 

The training set data only were used for selection of 
optimal descriptors. Prior to variable selection, descriptors of the 
training set data were scaled with equation 3 below. This gave 
the descriptors equal opportunity to possibly influence the 
models (TROPSHA et al., 2003; TROPSHA 2010).   X℩ =  (/0� /1)3   (3) 

In equation 3, X℩
 is the standardized descriptor values, Xi 

is the un-standardized descriptor values, X1 and σ are the average 
and standard deviation value for each column of descriptors X 
respectively.  

To decide the best descriptor variables combination that 
will produce the most statistically robust linear QSAR models, 
GFA strategy accessible in Materials Studio 7.0 software was 
utilized. GFA is a popular method that combines Holland's 
genetic algorithm to scan over the descriptors space for 
conceivable QSAR models and uses lack of fit (LOF) function 
from Friedman's multivariate adaptive regression splines 
algorithm to appraise the fitness of each model (ROGERS AND 
HOPFINGER,1994). In the software, GFA analysis condition 
was set such that the equation length range (5 - 12), population 
(10000), maximum generation (500), number of top equation 
returned (3), mutation probability (0.1) and scaled LOF 
smoothness parameter (0.5). The following steps were 
performed: (1) initial population of equations were generated by 
random number of descriptors, (2) pairs from the population of 
equations were chosen at random, crossovers were performed 
and progeny equations were generated, (3) the fitness of each 
progeny equation was assessed by lack of fit (LOF) score that 
automatically penalizes models with too many features. The 
fitness function, i.e., lack-of-fit is calculated by 

456 =  789
��� : ; <=> �?  (4) 

In equation 4, c is the number of basis functions, d is the 
smoothing parameter, M is the number of samples in the training 
set, LSE is the least square error and p is the total number of 
features contained in all basis functions. 

2.5 Model validation  
The quality, reliability and predictive ability of the 

models reported by GFA module were evaluated with different 
internal and external validation techniques and parameters. On 
each combination of descriptors, multiple linear regressions 
(MLR) and correlation analyses were performed at 0.05 level of 
significance. The quality of each model was then examined by 
the following parameters:  

Determination coefficient or square of the correlation 
coefficient (R2): describes the fraction of the total variation 
attributed to the model. The closer the value of R2 is to 1.0, the 
better the regression equation explains the Y variable 
(TROPSHA et al., 2003). 

R) = A∑B(CDEF�C1DEF)×%CGHIJ�C1GHIJ(KL?
∑(CDEF�C1DEF)?×∑%CGHIJ�C1GHIJ(?   (5) 

In Equation 5, Y�NO and YP��
 correspond to the observed 
(i.e. experimental) and predicted response values respectively of 
the training compounds 

Explained variance (R2adj,): a modified form of determination 
coefficient which accounts for the effect of new explanatory 
variables in the model, by incorporating a degree of freedom to 
the model (TROPSHA et al., 2003). 

RQ
�) = (R��)× S?� PR���P   (6) 

In Equation 6, N is the number of the molecule in the 
data, R2 is the determination coefficient, p is the number of 
descriptors in the model and N-1-p is the degree of freedom. 

Variance ratio (F): the ratio of regression mean square to 
the deviation mean square. 

F = ∑�UGHIJVU1DEF�?
G

∑�UDEFVUGHIJ�?
WVGVX

   (7) 

In Equation 7, Y�NO  and YP��
  represent experimental 

and predicted response values respectively, Y1�NO  is the mean 
response value for the training set data, N is the number of the 
molecule in the data, p is the number of descriptors in the model 
and N-1-p is the degree of freedom. The p-value for every 
regression coefficient should be significance at p < 0.05 and the 
overall significance of the regression equation F- value should 
be high (ROY et al., 2016). 

The standard error of estimate (SEE): standard deviation 
of the model defined. Low SEE is an indication of a good model 
(TROPSHA, 2010). 

SEE =  [%CDEF�CGHIJ(?
R�P��   (8)  

Variance inflation factor (VIF): the inverse of tolerance 
used to detect the presence of multicollinearity in a model. 

Tolerance = 1 −  R�)  (9) 

VIF = ��� Sf?  (10) 

In equation 8– 10,  R�)  is the coefficient of determination 
of a regression of descriptor j on all the other descriptors. If the 
tolerance value is less than a preset cut-off value (e.g., 0.1) or 
the VIF is higher than a cut-off value (e.g., 10), a multi-co-
linearity problem exists in the descriptor set (SIVAKUMAR et 
al., 2007). 

2.6 Leave one out cross-validation test 

To further investigate the internal robustness of the 
models, leave one out (LOO) cross-cross validation was done on 
the training set data. In perspective, various modified data sets 
were obtained from the original training set data by removing 
one molecule for each case. For every new data set generated, a 
QSAR model is developed using the same statistical method. 
This new model is applied to predict the activity value of the 
removed molecule. The obtained LOO predicted activity values 
are used to calculate the following parameters:  
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Predicted error sum of square (PRESS) 

PRESS = ∑%Y�NO − YP��
()
  (11) 

Standard deviation of error of prediction (SDEP) 

 SDEP ≡ RMSEP =  #�Skll�   (12) 

Cross-validated squared correlation coefficient Q2 

Q) = 1 − �Skll∑(CDEF�C1DEF)?  (13) 

In Equation 11 – 13, Yobs is the experimental response 
values for the removed data, Ypred is the predicted response value 
for the removed data using the new model obtained from the 
reduced training set and Y1�NO  is the mean of the experimental 
response value for the training set data. A predictive model 
should have Q) value greater than 0.5(TROPSHA et al., 2003). 

2.7 Y-randomization test  

This strategy was used to check if the reported models 
are products of chance correlation. During this process, activity 
values of the training set data were randomly permuted without 
making any change to the descriptor matrix and this was 
followed by multiple linear regression analysis. Each 
randomization runs yield estimates of R2 and Q2 values, which 
were expected to be low than that of the un-randomized data 
(TROPSHA, 2010).  

Randomization parameter designated Cno): 

Cno) =  R) × �1 − p|R) − R1�)| �  (14) 

In Equation 14, R2 is the square correlation coefficient 
for the regression analysis of non-randomized model and R1�) is 
the average of the squared correlation coefficient for the 
regression analysis of all randomization runs. A model is said 
to be acceptable if CRP)  is greater than 0.5. 

2.8 Validation through the test set 

The test set descriptors were scaled as described for the 
test set. The scaled values were consolidated into the proposed 
models and predicted activity for the test set data were 
calculated (Ypred(test)). Observed activity values (Yobs(test)) were 
regressed with predicted (Ypred(ext)) with different conditions. 
The resultant regression coefficients (r2) and slopes (k) were 
used to judge the predictive ability of the models according to 
GOLBRAIKH and TROPSHA (2002) criteria which stated that 
a model as good predictive capacity if the following conditions 
are true: 

RP��
) = 1 − ∑%CDEF(rIFr)�CGHIJ(rIFr)(?
∑%CDEF(rIFr)�C1DEF(rHs0t)(?  > 0.6  (15) 

Q2 > 0.5 

r2- r2
0/r2  < 0.1 and 0.85 ≤ k ≤ 1.15 or r2-r’2/r2 < 0.1 and 0.85 ≤ k′ 

≤ 1.15 

|r20-r’2
0| < 0.3 

 

In equation 15, Y1�NO(��Q��) is the mean response value 
for the training set data. In the criteria, r2 and r20 are regression 
coefficient of the plot of observed against predicted response for 
the test set data with and without intercept respectively, while k 
is the slope of this plot without intercept.  r’2 and  r’20 are 
regression coefficient of the plot of predicted against observed 
response for the test set data with and without intercept 
respectively and k′ is the slope of this plot without intercept. 

2.9 Applicability Domain (AD) 

QSAR models must always be verified for their 
applicability with regard to the chemical domain of dataset 
compounds (NETZEVA et al, 2005). In this study, AD of the 
model was defined by extrapolation leverage approach. Hat 
matrix was used to calculate the leverage value for each 
molecule in order to identify structural outlier in the dataset 
compounds. Identification of response outliers was done by 
calculating cross-validated standardized residuals for each 
compound and ± 3 was used as a threshold. The plot of the 
standardized residuals versus leverages (Williams plot) was 
used to show the AD of the model pictorially. The threshold 
value for the leverages h* was set to 3(m + 1)/n were m is the 
number of descriptors in the model and n is the number of the 
training set compounds. Generally, any compound in the data 
set with leverage value hi greater than the threshold  h* is outside 
the structural domain of the training set, therefore, it is an 
influential compound, predicted data for that compound is 
extrapolated by the model and could thus be less reliable. 
Furthermore, any compound in the data set with standardized 
residual greater ± 3 is outside the response domain of the 
training set, therefore, is an outlier to the model. 

3. RESULT AND DISCUSSIONS 

3.1 Dataset 

Kennard and Stone algorithm applied in the study divide 
the database into 52 training set and 18 test set compounds 
designated with an asterisk in Table 1. Table 2 presents the result 
of single column statistics performed on the activity values for 
both training and test set. It indicated that the maximum activity 
value in test sets was less than training set maximum value. 
Also, the minimum activity value in test sets was greater than 
the training set minimum. This indicated that the test set is 
interpolative of the training set i.e. obtained within the training 
set range. The similarity in mean and standard deviation of both 
sets showed that point distribution and spread in both sets were 
comparable. 

3.2 Model 

The best model produced by the GFA method used for 
model construction is presented below: 

BA = 7.441(±0.017) - 0.478(±0.050) ATS2v  
  - 0.465(±0.031) VE2_DZv 
   + 0.324(±0.028)  SpMax6_Bhm 
   -0.237(±0.020) ASP-6   
  +0.228(±0.028) RDF45i   (16) 

In equation 16, values in the parenthesis are the 
standard deviation. The model was obtained from 52 training set 
compounds and contains 5 molecular descriptors. Therefore, it 
obeys the QSAR rule of thumbs which state that for the problem 
of chance correlation to be acceptably low, the ratio of 
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descriptors in the model to compounds used to build the model 
should not exceed 1:5 (TOPLISS AND CASTELLO, 1972). 
Also contained in Table 2 are the validation parameters for the 
model. As reported in the table, models determination 
coefficient R2, adjusted determination coefficient R2

adj, leave 
one out cross-validated determination coefficient Q2 and 
modified leave one out cross validation coefficient  R2

m(loo) were 
greater than 0.5. This indicated that the model was not over 
parameterized and has good internal predictive ability. The 
value of R2

adj (0.899) showed that model explained over 80% of 
the variation in training set data. The model variance ratio F-
value (82.03) is far greater than critical F-value (2.39) for (5, 52) 
degree of freedom at p < 0.05. This suggested that variation in 
the activity explained by combinations of descriptors in the 
model is not attributed to chance. Furthermore, randomization 
parameter cR2

p value is greater than 0.5, average randomization 
runs determination coefficient R12

rand and average randomization 
runs leave one out cross-validated determination coefficient Q12

rand  are far less than 0.5. This further confirmed that the model 
is not a product of chance (ROY et al., 2012; ROY et al., 2015). 

External validation result showed that models predicted 
square correlation coefficient R2

pred, modified square correlation 
coefficient for test set  R2m(test)  and overall modified square 
correlation coefficient R2m(overall) were greater than 0.6, 
indicating the model has good external predictive ability. Also 
reported in the table, the model passed the GOBRAIKH and 
TROPSHA (2002) criteria for an externally predictive model. 
Furthermore, the model's descriptors variance inflation factor 
(VIF), t-statistics, p-values are presented in Table 3. The table 
showed that p-values for the descriptors were less than 0.05 and 
their t-statistics values were greater than 2 at 95% confidence 
level, indicating all descriptors are contributed significantly to 
the model. In addition, their VIF values were less than 10, 
meaning the model is void of multi-co-linearity problem and 
descriptors were reasonably orthogonal to each other (PABLO 
et al, 2012). Fitness plot for the model showing a linear 
relationship between predicted activity values by the model and 
observed experimental activity is presented in Fig 1.  

Table 2-model’s quality and validation statistics 
Single column statistics 

 Max Min Mean St. dev. 
Train set 8.266 6.508 7.449 0.344 
Test set 8.263 6.687 7.518 0.455 

Validation parameters 
Internal validation  External validation 

R2 0.899  R2
pred 0.706 

R2
adj 0.888  r2 0.713 

F 82.03  r2
0 0.702 

Q2 0.866  r’2
0 0.671 

SDEP 0.125  R2
m(test) 0.626 

SEE 0.115  R2
m(overall) 0.764 

PRESS 0.809  |r20-r’2
0| 0.031 

LOF 0.066  k 1.003 
R2

m(loo) 0.845  r2- r2
0/r2 0.016 R12

rand 0.113  k′ 0.996 Q12
rand -0.165  r2-r’2/r2 0.059 

cR2
p 0.847  R 0.948 

 
Williams plot presented in Fig. 2 depicts the model’s 

applicability domain. The plot showed that almost all dataset 
compounds had leverage values less than the warning/threshold 
leverage h* (0.35) except for a compound in the training set. 

This compound is an influential point but not an outlier with 
respect to the standardized residual (OPREA, 2005; 
TODESCHINI and CONSONNI, 2009). In general, the model 
presented in the study was robust and had good internal and 
external predictive ability and thus, can be utilized to predict the 
anticonvulsant activities of compounds in its applicability 
domain.  

 
Figure 1 Fitness curve for the model 

 
Figure 2 Williams plot for the model 

3.3 Interpretation of descriptors 

Mean effect was used to evaluate the relative importance 
and contribution of each descriptor to the model 
(POURBASHEER et al., 2009; RIAHI et al., 2009). It was 
calculated using the equation below (HABIBI AND 
DANADEH, 2009):  

MF� =  uf ∑ 
0f0vt0vX∑ ufwf ∑ 
0ft0   (17) 

In equation 17, MFj is the mean effect of a descriptor j, 
βj is the coefficient of the descriptor J in the model, dij is the 
value of the descriptor in the data matrix, m is the number of 
descriptors that appear in the model and n is the number of 
molecules in the training set. Brief description descriptors 
contained in the model and their corresponding MF values were 
included in Table 3. The first descriptor in the model is ATS2v 
defined as Broto-Moreau autocorrelation-lag2/weighted by 
Vander Waals volume (TODESHINI AND COSONNI, 2009). 
It indicates that changing the van der Waals volume two vertices 
apart affect the biological activities of the molecules, thus 
changing the type of atoms or increase in the complexity of 
vertices that are two bonds apart will affect the anticonvulsant 
activity of the molecules. This descriptor had absolute MF 
(10.10) value - the highest among the descriptors. This implied 

R² (train) = 0.8992

R² (test) = 0.713
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it had the highest contribution to the anticonvulsant activity of 
dataset molecule. However, it negative sign showed that 
increase in the magnitude of this descriptor increases the percent 
protection of studied compounds. Therefore, increase in 

molecular linearity and taken into account the van der Waals 
volume of added substituent have great influence on the 
anticonvulsant activity of studied compounds. 

 
Table 3- Model’s descriptors definition, regression statistics and mean effect values 

Symbol Meaning t-stat p-value VIF MF 
ATS2v Broto-Moreau autocorrelation-lag2/weighted by Vander 

Waals volume 
-9.470 2.2E-85 9.721 -10.10 

VE2_DZv Average coefficient sum of the last eigenvector from 
Barysz matrix/weighted by Vander Waals volume 

-15.13 1.7E-19 3.091 9.254 

SpMax6_Bhm Largest absolute eigenvalue of Burden matrix-6/weighted 
by relative atomic mass 

11.43 4.9E-15 3.039 5.467 

ASP-6 Average valence path of order 6 -11.61 2.8E-15 1.649 -5.311 
RDF45i Radial distribution function at 4.5 interatomic distance 

weighted by first ionization potential 
8.078 2.3E-10 3.553 1.685 

 

The second descriptor is VE2_DZv define as the average 
coefficient sum of the last eigenvector from Barysz 
matrix/weighted by Vander Waals volume (TODESHINI AND 
COSONNI, 2009). It is a spectral index obtained from the 
coefficient of the eigenvector associated with the largest 
negative eigenvalue of a given graph-theoretical matrix (Barysz) 
and the weighting scheme w is Vander Waals volume. It 
provides discrimination among graph vertices and lower values 
of this descriptor correspond to vertices of lower degree, farther 
from the center or from a vertex of higher degree. This implied 
it is an index of branching and it lower value corresponding to 
chain graph and a higher value corresponding to increase 
branching (TODESHINI AND COSONNI, 2009). The MF 
value of this descriptor was 9.25 (second among other 
descriptors). It contributed relatively high to the model and its 
positive sign implies a higher numerical value of this descriptor 
decrease the percent protection of the studied compounds. 
Therefore, increased branching in studied compounds may 
reduce their anticonvulsant activity values. 

The third descriptor is SpMax6_Bhm define as a largest 
absolute eigenvalue of Burden matrix-6/weighted by relative 
atomic mass (TODESHINI AND COSONNI, 2009). It’s also a 
spectra index defined in terms of eigenvalues of a given graph-
theoretical square matrix M (Burden matrix). Also, it is an index 
of molecular branching with smallest values corresponding to 
chain graphs and the highest to the most branched graphs 
(TODESHINI AND COSONNI, 2009). It had MF value of 
3.039 (fourth position in relation to others) and its positive sign 
supported the second descriptor. Addition of highly branched 
substituent may increase the atomic mass of the studied 
compound and also increase the value of the descriptor. This 
effect also increases BA which means a decrease in percent 
protection of the molecule. 

The fourth descriptor is ASP-6, defines as average 
valence path of order 6 (YAP, 2011; KIER AND HALL, 1976). 
It’s a molecular connectivity descriptor obtained from 
hydrogen-suppressed valence-weighted graph defined for 
distinct edges and vertices equal to or greater than six in a 
sequence. It is also an index of branching, however, its value 
decreases with increase branching. That means opposite 
behavior compare to VE2_DZv and SpMax6_Bhm. This could 
inform it negative MF (-5.311) value and increase in the 
magnitude of the absolute value of this descriptor in the model 
increases the percent protection of studied molecule. It was 

reported that presence of heteroatom like O and N increases the 
magnitude of the absolute value of this descriptor depending on 
the number of hydrogen atom attached to them and their orbital 
type. Also, the presence sulfur and halogen increase the 
magnitude of the absolute value of this descriptor (KIER AND 
HALL, 1976). Furthermore, the presence of multiple bonds also 
increases the magnitude of the absolute value of this descriptor. 

The last descriptor is RDF45i define as radial distribution 
function at 4.5 interatomic distance weighted by first ionization 
potential (YAP, 2011; TODESHINI AND COSONNI, 2009). It 
is a 3D descriptor which provides information about steric 
hindrance, or structure/activity properties, distribution of 
interatomic distances, bond distances, ring types, planar and 
non-planar systems, and atom types in a compound depending 
on the molecular property included in the function as the 
weighting scheme (TODESHINI AND COSONNI, 2009). 
RDF45i showed that a linear relationship exists between the 
anticonvulsant activity values of the studied compound and 3D 
distribution of the amount of energy required to remove the most 
loosely bounded electron, valence electron of isolated gaseous 
atoms in the molecule. It had positive MF (1.685) values (least 
in relation to others). It positive MF implied it higher numerical 
value decreases percent protection of the studied compounds. 

4. CONCLUSION 

In the present study, QSAR analysis of some quinazoline 
derivatives with anticonvulsant activity against MES induced 
seizure was carried out and ATS2v, VE2_Dzv, SpMax6_Bhm, 
ASP-6 and RDF45i molecular descriptors were identified to 
influence the activity of the studied compounds. The reliability 
and applicability of the model were defined and found to be 
good with R2 (0.899), Q2 (0.866), F (82.03) and R2pred (0.706). 
Attempt to interpret descriptors contained in the model showed 
that anticonvulsant activity of the studied compounds was 
influenced by the degree of branching and the electronic nature 
of the atoms in the molecules. The study provides insight into 
factors that influenced the activity of study compounds. It also 
provides tools that can serve as a knowledge generator 
applicable for In silico designed for new molecules within AD 
of the model that in principle would have improved 
anticonvulsant activities. Thus, serving as a guide before the 
more expensive in vivo and in vitro experiment is embarked 
upon.  
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