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Quantitative structure-activity relationship study was done on some quinazoline-4(3H)-ones
derivatives with anticonvulsant activity against maximal electroshock-induced seizure. The
quinazoline derivatives used as dataset and their anticonvulsant activity value were obtained
from the literature. The molecular structure of the dataset compounds was generated with
Spartan 14 software. This was optimized with PM3 semi-empirical quantum mechanical
method available in the software. Molecular descriptors were obtained from the optimized
structures using the PaDEL-Descriptor software. Activity values of the compounds and
molecular descriptors obtained from the optimized structure made up the database for the
study. The database was divided into training and test sets with Kennard Stone algorithm.
Genetic function algorithm was used to develop quantitative structure-activity relationship
models. The best model obtained was stable, robust and had good statistical parameters
including determination coefficient R? (0.899), adjusted determination coefficient RZ
(0.888), variance ratio F (82.03), leave one out cross-validated determination coefficient Q2
(0.866) and predicted determination coefficient for the test set R%yeq (0.7406). The model
indicated that the anticonvulsant activity of the studied compounds was dependent on Broto-
Moreau autocorrelation-lag2/weighted by Vander Waal s volume (ATS2v), average coefficient
sum of thelast eigenvector from Barysz matrix/weighted by Vander Waals volume (VE2_DZ2v),
largest absolute eigenvalue of Burden matrix-6/weighted by relative atomic mass
(SpMax6_Bhm), average valence path of order 6 and radial distribution function at 4.5
interatomic distance weighted by first ionization potential (RDF45i).
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1. INTRODUCTION

Epilepsy comprises a group of disorders charaete i/
the periodic and abnormal discharge of nervousidisk often
manifests as violent involuntary muscle contractioand
convulsions a phenomenon known as a seizure. $sizan
have many causes and constitute evidence of anrlyimgde
neurologic disorder. It is reported to affect ab&0t million
individuals worldwide of which about 10.5 milliomeachildren
and almost 90% of these people are in the devajopnntries
(THIRUMURUGAN e al.,, 2006). Pharmacological
management remains the primary method to trea¢pil and
many chemical agents known as antiepileptic drugsDs)

compounds and linear correlation of the activityueato free
energy change (GRAMATICAIgt al., 2012; NOOLVIlet al.,
2010). Logit transform was used to convert thevigtvalue to
logarithm unit:

% Protection ])
100—% Protection

BA = Log (|

: (1)

In equation 1, MW is the molecular weight of the
compound and d is the dose in mg/kg. Molecularcstne and
anticonvulsant activities in logarithm unit for thgataset
compounds are presented in Table 1.

Table 1 Molecular structure of quinazoline-4(3H)-ore
derivative and anticonvulsant activities

have been developed. However, despite the develupinese NI SNt R ST i BA
AEDs over 30% of people with epilepsy do not haszge *1 e} 6.687
control and others do so only at the expense oifsgnt dose- Br\©f‘\N—NHCHZCOOQH5
related toxicity and other adverse effects (BROWMNIDA %\
HOLMES, 2001; KRAMER, 2001). Therefore, the seafah N
new anticonvulsant drugs with fewer side effects haen 2 2 N—N 6.807
continuous. ©f‘>N:NHCHz—<S)—NHz

—

Quinazolinone ring system has been reported to he 3 N 0 7018
wide range of biological properties including amtitor, anti- Br R -Q_LNH '
HIV, selective estrogen beta modulator, anti-inflaatory, m 2 g 2
antibacterial, antidepressant and central nervoystes o N o |
depressant activities (BAVETSIASet al., 2007; AL- 4 D 7.281
RASHOOD et al.,, 2006; ALAGARSAMY et al., 2007; m”“”?“””““”“"”\ >':°
GUNGORet al., 2006). This ring system is considered as N ot &N
interesting moiety and many derivatives substitiigdifferent 5 0 Ne—N 6.964
heterocyclic moieties at 3rd position of their metgclic system '\©5‘\N—NHCHZ{ D,
has been reported to exhibit anticonvulsant prgpevith N%\ S
reduced toxicity (EL-HAKIM et al., 1994; EL-NASER- 6 9 NN 7172
OSSMANet al., 1994). Br@fj:””"”?{s J W—

—

The objective of the present study is to perfor 1 N
quantitative structure-activity relationship stu@@SAR) on *7 0 - 7.099
some newly synthesis quinazoline-4(3H)-ones ddvigat Cﬁ‘\N_NHCHQ{ )_N=g©
reported in literature (GEORGE#® al., 2008; MOHAMED, )\ S
2014) to possess anticonvulsant activity againsixime *g g 7 499
electroshock-induced seizure (MES). This was dangain /N—“{ Y '
insight into factors that influence the activity tife studied N—NHCHAS)—N=04©70%
compounds and provide a rationale for designing ne N)\
compounds with improved activity value. QSAR anilys an 9 o - OCH, 7308
area of computational research concern with estaiblj a Cﬁ‘\N_NHC,ﬁ( )_N=gg®
mathematical relationship between a quantitativesuee of N)\ S
chemical structure (molecular descriptors) and @lolical 10 0 NeN 7.293
activity (ROY AND GHOSH, 2010). It has played arsestial @N—NHCHZ( )—N=E~©—0H
role in the development of compounds in mediciremistry, )\ S
pharmaceutical. designs, drug metabolism and opaitioin of 11 ON 7391
the molecular structure with defined purpose (SPEC z‘ﬁ_ K :
PLANCHE AND CORDEIRO, 2012). )”;N“C”Z s ”‘C@N“”@?

N
2. MATERIAL AND METHODS 12 ° N e 7.517
Cﬁl\N—NHCHAS)—N=84®70H
2.1 Database development N/A
13 2 N—N 7.358

The dataset comprises derivatives of quinazolird Br\©f‘\N_NHCH2//\ )_N=34©
ones obtained from literature concerned only with synthesis )\ s
of the derivatives and their pharmacological teshg similar 14 N 7577

assay (GEORGEYet al., 2008; ARCHANA et al., 2004;
MOHAMED, 2014). The assay used was maximal elebtrok
seizure (MES) test on mice and compounds anticeawtl

o N—NHCHJZ—’il N=EOOCH3
O

activity values were reported as percent protectidnis was
recalculated to the logarithmic unit for comparipibetween
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Continued Table 1 Continued Table 1
S/N  Compound Structure/Name BA SIN Compound Structure/Name BA
15 0 - OCH; 7385 33 @i“\N/NHz 6673
I - =
e O = e
A i
16 i NN 7.564 *34 @i‘?\N/OH 7.424
Br- . / \ _H Né‘\' a
\dl\N NHCH—‘»(S)—N—C‘@*OH O\C‘
N)\ Cl

O, H
17 i N 7.588 gEs N 6.997
=5 / \ H N—NHCHchHNNH\é‘NHCH2HC/ >:o
N—NHCH2< )—N=C N(CHa), \ .
S _— //c N
7 N CHj H
N

OH o
ci

18 o] N OCHs 7.591 36 ©i?:?:'?'\9/\c' 7.621
BI\@%”_“”"”ZQ)_ “=E@ " ==
N

19 @/ﬂN/N e )‘w 7.353 T =y N — 7.866
N=5 N>)— N¢\'o © Hf

H

20 i 7.573 38 g ¥ o 8.266
e e '
)\NHCHA );{N\/(:~<;>—OCH3 —— 8 o

21 e 7.573

*39 = R ~ R — 8.262
ety :

22 2 7.794 _
Cﬁ% ol )—N-C—Qo *40 @f{,;”;“\STG o 8.013
)\ Z\/S 3 i \©
H

23 2 ,_/2\ )_ 7.584
N—NHCI N—CO— N(CHa), 41 S 7.834
Cror=tArs e i

*24 0 QCHy 7.821

H

—— )—N—c~©—o 42 T n 7.306
@f;\ A A
25 5w Br 7.483 °

\ 43 Q H 7.860
CHs “N—gc——N—"— cl
w __F o e e RRESTR
& © ) O H
CHs 44 N_ 7.172
27 o o 7.873 I et -
(@]

el O e,

H
*28 o e 7.862 B ek i e
o Csn—nrorl ) N—E'—QOH o=
\C[ 2\ ® J\/\s "
0
N
29 0 = 7.882 46 2 N_K 7.622
Br Cun—pHond -t NCHg, G‘::;\ CI\©\OCH
S % (e} 3
N/ 2% \©\CI
30 (OCHs 8.237 *7 [e) [¢) NO, 7354
NHCHZ\ )—N OH N)K/\N
A H
04/\/3 N o HO
31 7.459 Chs

@fﬂ'}\/\” oo 48 i 7.355
N0 H F\d\N
CHs
B2 = 7.352 N/):\©\F
N o

- o <! 49 7.476
@CI F\©f‘\N/\©\
Ng\ I
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Continued Table 1

Continued Table 1

SN CompoundStructure/Name BA SIN Compound Structure/Name BA
50 7.497 66 *Se—n " 7.659
F\©5‘\N \E’:lf‘\N_NHCHQ c—NHCHyC/C_N/c=o
Nm\Br ° A
*| (¢] o [ H
51 L, _ 7.465 67 %/C_N\/_ 7.171
P o < > N—NHCH c\ /C—NHCI-H \ /C—S
N O LN
CHs 0 “H
52 6.509 68 N 7.647
\Cf‘\N_NHCHZCOOCZ'—% N_NHCH C\ /C—NHCHH < >c=s
O/C—N\H
53 6.777 69 N Ny 7.844
N—NHCHZCOOCZH5 B /\ /N
/ C——NHCHEC, C==s
N—NHCH C\ / 2 \ /
O/C—N\
*54 6.983 *70 e 8.257
N—NHCHzcoHNNHCNHz \(;5‘\ SN \\C—”“C“’*< Vi
N,
55 s /c—N/H 7.611 Data used as the test set are designated withiskster BA is the
N—NHcH coHNNHcNHcH — o anticonvulsant activities in logarithm unit
//C—N\
_ _ 2.2 Molecular structure generation and descriptor
56 \\/c—N\/_ 7.672  calculation
0//\°—”/\H With the specific end goal of developing QSAR model
§ that can predict accurately the anticonvulsantvaiets of the
57 \>C_N/ 7.364 data set molecules, the 3D structure of the datasktcules was
E;ﬁkw—wcmcowwcwcmcq >c== generated with Spartan 14 software (SHAO et al620and
7N, their geometry optimized with the semi-empiricalagtum
53 3 R 77269 mechanical method available in the software. Opitiidn was
\>°—N\ . ' performed until the root mean square (RMS) gradienteach
N_N”C”ZCOHNN”CN”C”’*C N compound was smaller than-4@u). This was done to give a
an better description of dataset compounds moleculzdtad wave-
59 N A 7.624 function and obtain reliable data on electroni ies of each
Ny
N_NHCHCOHNNHCNHCHHC\ Yo=s compound (GAVERNETet al., 2007; CHOUDHARY AND
AN SHARMA, 2014). The optimized structures were ported
- . - PaDEL-Descriptor software (YAP, 2011) to computeuad
60 \)—N(_ 7.918 1875 different physicochemical, topological andustural
N_””°” °°“N””°””°”“>C_N/°_S molecular descriptors. The activity values and descriptor
o Y constitute the database for the study.
61 . 7.414 2.3 Database division
\E:f‘\N/\@\ The database comprises of activity value and d&scs
cl for compounds arranged in &m matrix where n is the number
62 7.013 of compounds and m the number of descriptors. & eraided
N_NHCHchHNNHCNHz into training and test sets with Kennard and Stalg®rithm
available in Datasetdivision 1.2 software (AMBURE al.,
5 - 2015). This algorithm was reported to produce denetataset
63 N—N D 7.331  division results (ROY et al., 2008; ROY, 2007). Tdigorithm
d —NHCH;- C\S/C Mol S proceeded by finding the Euclidean distancgdetween the
o i molecular descriptor vectors of each pair of conmutsu, j:
64 ON_N/H 7.635 d: = IIX; = X:|| = ’Zm X — X 2 2
N—NHCH C\ /C NHCHz'E: >C=0 1j ” i l” k:1( ik Jk) ( )
O¢G_N\H
In equation 14, k is the number of descriptorg, %k«
65 N— Iy 7.404  were similar descriptor contained in tg X; descriptor vector

\

VN
\(jfl\w—mm2 c\ /c NCHEC,  0=0
—N
O/C \H

respectively. Once the distances had been caldjlateo
compounds that were farthest apart in terms ofntleasured
distance were selected i.e. the pair I, J withldingest value of
dij. Compounds that exhibit the largest minimum distawith
respect to the two previously selected compounds e&lected
and placed in the training set. These steps weqreated until
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the desired number of compounds had been addkd teining
set and the remaining compounds were used as shes¢é
(KENNARD AND STONE 1976).

2.4 Variable selection/model development

The training set data only were used for selectbn

optimal descriptors. Prior to variable selectiogsctiptors of the

training set data were scaled with equation 3 belbvis gave

the descriptors equal opportunity to possibly ieflue the

models (TROPSHAt al., 2003; TROPSHA 2010).
X Xi—X)

(o

®3)

In Equation 5Y,,s andY,.4 correspond to the observed
(i.e. experimental) and predicted response valkessectively of
the training compounds

Explained variance (y): a modified form of determination
coefficient which accounts for the effect of newplaxatory
variables in the model, by incorporating a degrefeedom to
the model (TROPSHA et al., 2003).

RZ, — (N-1)xR?-p
adj — N—1—
p

(6)

In Equation 6, N is the nhumber of the moleculetia t
data, R is the determination coefficient, p is the numbér

In equation 3X'is the standardized descriptor values, ¥escriptors in the model and N-1-p is the degrefeeefdom.

is the un-standardized descriptor valdeéands are the average

and standard deviation value for each column ofrifgers X
respectively.

To decide the best descriptor variables combinatian
will produce the most statistically robust linea8&R models,
GFA strategy accessible in Materials Studio 7.Qvemfe was
utilized. GFA is a popular method that combines latad's
genetic algorithm to scan over the descriptors epfar
conceivable QSAR models and uses lack of fit (L@irction
from Friedman's multivariate adaptive regressiorinep
algorithm to appraise the fitness of each modelGEAS AND
HOPFINGER,1994). In the software, GFA analysis dtonl
was set such that the equation length range (5, pbpulation
(10000), maximum generation (500), number of topagiqn
returned (3), mutation probability (0.1) and scale®F
smoothness parameter (0.5).

random number of descriptors, (2) pairs from thpubation of
equations were chosen at random, crossovers weferped
and progeny equations were generated, (3) thesfitoé each
progeny equation was assessed by lack of fit (L&6ye that
automatically penalizes models with too many fesgurThe
fitness function, i.e., lack-of-fit is calculategt b

LSE

(1-S2ap)”

LOF = (4)

In equation 4, c is the number of basis functi@hss the
smoothing parameter, M is the number of samplésaitraining
set, LSE is the least square error and p is tla ttmber of
features contained in all basis functions.

2.5 Model validation

The quality, reliability and predictive ability othe
models reported by GFA module were evaluated wiffierent
internal and external validation techniques ancpeters. On
each combination of descriptors, multiple lineagressions
(MLR) and correlation analyses were performed @5 Cevel of
significance. The quality of each model was theangixed by
the following parameters:

Determination coefficient or square of the coriielat

The following steps ewer
performed: (1) initial population of equations wegenerated by

Variance ratio (F): the ratio of regression meauese to
the deviation mean square.

z:(v’(l.)red_"?obs)z
F = %
z:(Yobs_Ypred)
N-p-1

(@)

In Equation 7Y,phs andYpreq represent experimental

and predicted response values respectiVgjy, is the mean
response value for the training set data, N isntimaber of the
molecule in the data, p is the number of descripiothe model
and N-1-p is the degree of freedom. The p-value efeery
regression coefficient should be significance &tg05 and the
overall significance of the regression equatiorvédue should
be high (ROYet al., 2016).

The standard error of estimate (SEE): standardatieni
of the model defined. Low SEE is an indication gfod model
(TROPSHA, 2010).

SEE = (Yobs_Ypred)2
N-p-1

Variance inflation factor (VIF): the inverse of ¢ohnce
used to detect the presence of multicollinearitg imodel.

(8)

— 2
Tolerance = 1 — Rj (9)
1

—R?
1R]

VIF =

(10)

In equation 8— 10R,-2 is the coefficient of determination
of a regression of descriptor j on all the othesadiptors. If the
tolerance value is less than a preset cut-off védug., 0.1) or
the VIF is higher than a cut-off value (e.g., 18)multi-co-
linearity problem exists in the descriptor set (BRIUMAR et
al., 2007).

2.6 Leave one out cross-validation test

To further investigate the internal robustness loé t

coefficient (R): describes the fraction of the total variatiof0dels, leave one out (LOO) cross-cross validatias done on
attributed to the model. The closer the value disRo 1.0, the the training set data. In perspective, various fiedlidata sets

better the regression equation explains the Y kkiaWere obtained from the original training set dayarémoving
(TROPSHA et al., 2003). one molecule for each case. For every new datgesetrated, a

[2{(Yobs—Tobs)* (Yored-Tored)}]’ QS_AR model is Qeveloped using t_he same _st_atistit&athod.
R? = P PR This new model is applied to predict the activiglue of the

2(Yobs—Yobs)?XE(Ypred=Ypred) removed molecule. The obtained LOO predicted dgtxalues
are used to calculate the following parameters:

®)
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Predicted error sum of square (PRESS) In equation 15Yops(train) iS the mean response value
B 2 for the training set data. In the criteridand f, are regression
PRESS = Z(Y"bs B Ypred) (11) coefficient of the plot of observed against pregtictesponse for

o o the test set data with and without intercept resypaly, while k
Standard deviation of error of prediction (SDEP) is the slope of this plot without intercept. 2 gnd o are

PRESS regression coefficient of the plot of predicted iagaobserved
SDEP = RMSEP = | (12) response for the test set data with and withouerdeipt

respectively and’ks the slope of this plot without intercept.

Cross-validated squared correlation coefficieft Q 2.9 Applicability Domain (AD)
Q?=1-

PRESS

ST 13) QSAR models must always be verified for their
obs™ lobs

applicability with regard to the chemical domain ddtaset
compounds (NETZEVA et al, 2005). In this study, Abthe
fnodel was defined by extrapolation leverage approatat
UShatrix was used to calculate the leverage value each
olecule in order to identify structural outlier the dataset
ompounds. Identification of response outliers wase by

In Equation 11 — 13, s is the experimental respons
values for the removed datay¥is the predicted response val
for the removed data using the new model obtaineoh fthe
reduced training set affl,, is the mean of the experimenta

response value for the training set data. A pragicmodel ., iatin : . ;

g cross-validated standardized residdals each
should have)? value greater than 0.5(TROPSH#al., 2003). compound and + 3 was used as a threshold. Theopltite
2.7 Y-randomization test standardized residuals versus leverages (Williatog) pvas

_ _ used to show the AD of the model pictorially. Timeeshold
This strategy was used to check if the reportedetsod, ;e for the leverages h* was set to 3(m + 1)/newa is the

are products of <_:h_ance correlation. During thixpss, a_ctivity number of descriptors in the model and n is the brmof the
valu_es of the training set data were _randomly _pmrhuntho_ut training set compounds. Generally, any compounthéndata
making any change to the descriptor matrix and &S get\ith leverage value greater than the threshold h* is outside

followed by multiple linear regression analysis. cEa yhe stryctural domain of the training set, therefait is an
randomization runs yield estimates of&d @ values, which ;4. antial compound, predicted data for that commmb is

were expected to be low than that of the un-randedhidata extrapolated by the model and could thus be letabte.
(TROPSHA, 2010). Furthermore, any compound in the data set withdstatized

Randomization parameter designa®&g: residual greater + 3 is outside the response dorohithe
" training set, therefore, is an outlier to the model

°RZ = R?x (1—/IRZ—R¥[ ) (14)
3. RESULT AND DISCUSSIONS

In Equation 14, Ris the square correlation coefficient
for the regression analysis of non-randomized maddR? is 3.1 Dataset
the average of the squared correlation coeffidienthe
regression analysis of all randomization runs. Alelés said
to be acceptable R is greater than 0.5.

Kennard and Stone algorithm applied in the studiddi
the database into 52 training set and 18 test s@ipounds
designated with an asterisk in Table 1. Table 2¢mits the result
2.8 Validation through the test set of single column statistics performed on the attivialues for
both training and test set. It indicated that tlexiimum activity
value in test sets was less than training set maximnralue.
Also, the minimum activity value in test sets wasaier than
the training set minimum. This indicated that tlesttset is
interpolative of the training set i.e. obtainedhiitthe training
set range. The similarity in mean and standardadiewi of both
sets showed that point distribution and spreadth bets were
comparable.

The test set descriptors were scaled as descrilvatie
test set. The scaled values were consolidatedhet@roposed
models and predicted activity for the test set datere
calculated (Wredies). Observed activity values {¥sqes) Were
regressed with predicted (¥iex) With different conditions.
The resultant regression coefficientd) (and slopes (k) were
used to judge the predictive ability of the modatsording to
GOLBRAIKH and TROPSHA (2002) criteria which statidt
a model as good predictive capacity if the follogvtonditions 3.2 Model

are true: The best model produced by the GFA method used for
R2q =1 Z(Yobs(test)_ipred(test))z 0.6 (15) model construction is presented below:
2(Yobs(test)~Yobs(train)) BA = 7.441(x0.017) - 0.478(x0.050) ATS2v
- 0.465(+0.031) VE2_DZv
Q*>0.5 +0.324(+0.028) SpMax6_Bhm
r- r%yr < 0.1 and 0.85 k< 1.15 or #-r'?r2< 0.1 and 0.85 k' -0.237(20.020) ASP-6
<115 +0.228(+0.028) RDF45i (16)
%-r2o| < 0.3 In equation 16, values in the parenthesis are the

standard deviation. The model was obtained fronrding set
compounds and contains 5 molecular descriptorstefdwee, it
obeys the QSAR rule of thumbs which state thattferproblem
of chance correlation to be acceptably low, theoraif



JCEC - ISSN 2527-1075.

descriptors in the model to compounds used to lhédmodel This compound is an influential point but not artlieu with
should not exceed 1:5 (TOPLISS AND CASTELLO, 1972jespect to the standardized residual (OPREA, 2005;
Also contained in Table 2 are the validation par@nsefor the TODESCHINI and CONSONNI, 2009). In general, the elod
model. As reported in the table, models determamatipresented in the study was robust and had goodhaiteand
coefficient R, adjusted determination coefficienf.R leave external predictive ability and thus, can be wtitizo predict the
one out cross-validated determination coefficiert hd anticonvulsant activities of compounds in its agglility
modified leave one out cross validation coefficié®f.0) Wwere  domain.
greater than 0.5. This indicated that the model natsover 9517 re (test) = 0.713
parameterized and has good internal predictiveitpbilhe 9.0 -

value of R.g(0.899) showed that model explained over 80% of 85 - R2 (train) = 0.8992

the variation in training set data. The model va@ratio F- <

value (82.03) is far greater than critical F-valRe39) for (5, 52) 2 8.0 1

degree of freedom at p < 0.05. This suggestedvéimation in =~ @ 7.9 7

the activity explained by combinations of descniptin the % 7.0

model is not attributed to chance. Furthermoredoanization L g5

parametefR?%, value is greater than 0.5, average randomization @ 6.0 - Atrainin

runs determination coefficieR%angand average randomization 5'5 | g

runs leave one out cross-validated determinatiosffictent ) ¢ test

Q%anaare far less than 0.5. This further confirmed thatmodel 5.0 ' ' '

is not a product of chance (ROY et al., 2012; RO¥l¢ 2015). 5.0 7.0 9.0 11.0
Observed BA

External validation result showed that models priedi

square correlation coefficientfRq modified square correlation Figure 1 Fitness curve for the model

coefficient for test set Resy and overall modified square 4.00 7

correlation coefficient Rnoverany were greater than 0.6, 8 3.00

indicating the model has good external predictibiitg. Also g 2001 . . Atest
reported in the table, the model passed the GOBRAl#MD o ®e A2 o train
TROPSHA (2002) criteria for an externally predietimodel. 1001 % A.ﬁ‘-" . 'Af training
Furthermore, the model's descriptors variance tioflafactor 3 0.00 - {.3'00. .

(VIF), t-statistics, p-values are presented in €l The table 3 -1.00 4 o&*’ 2’-'1“ .

showed that p-values for the descriptors werethess 0.05 and .§ ' e o° .

their t-statistics values were greater than 2 & @®nfidence & -2.00 1

level, indicating all descriptors are contributégnificantly to -3.00

the model. In addition, their VIF values were l¢Ban 10, -4.00 S S,
meaning the model is void of multi-co-linearity ptem and 0.000.050.100.150.20 0.25 0.30 0.35 0.40 0.45 0.50
descriptors were reasonably orthogonal to eachr gE%&BLO

et al, 2012). Fitness plot for the model showing a linea leverages

relationship between predicted activity valueshmy todel and Figure 2 Williams plot for the model

observed experimental activity is presented inlkig 3.3 Interpretation of descriptors

Jable 2-model's u“t and valldat|o tat'St'CS Mean effect was used to evaluate the relative itapoe
Milxnge coMuir:n Statlsl\t/llzsan St dev and contribution of each descriptor to the model
- : "= (POURBASHEER et al., 2009; RIAHI et al., 2009).was
TTr:éT ssee gggg gggg ;gig gigg calculated using the equation below (HABIBI AND
: T . : DANADEH, 2009):
Validation parameters _

Internal validation External validation _ BjXZiZidy

R? 0.899 Repre 0.706 MF; = Swg zray 7
R2. 0.888 r? 0.713
F 82.03 r’o 0.702 In equation 17, MFis the mean effect of a descriptor j,
Q? 0.866 r'% 0.671 B is the coefficient of the descriptor J in the miodig is the
SDEP 0.125 R2m(test) 0.626  value of the descriptor in the data matrix, m is ttumber of
SEE 0.115 R2m(overall 0.764 descriptors that appear in the model and n is taber of
PRESS 0.809 I2o-r2| 0031 Mmolecules in the training set. Brief descriptionsa@tors
LOF 0.066 K 1.003 contained in the model and their corresponding Mlges were
R2m(o0) 0.845 r2- 12r2 0.016 included in Table 3The first descriptor in the model is ATS2v
R2anc 0.113 K’ 0996 defined as Broto-Moreau autocorrelation-lag2/wegghtby
Qranc -0.165 r2-r 22 0.059 V:_:mdgr Waals volumg (TODESHINI AND COSONNI, _2009).
°R?, 0.847 R 0.948 It indicates that changing the van der Waals voltmtevertices

apart affect the biological activities of the mallss, thus
changing the type of atoms or increase in the ceriyl of
vertices that are two bonds apart will affect tnicnvulsant
activity of the molecules. This descriptor had abiso MF
(10.10) value - the highest among the descripfthgs implied

Williams plot presented in Fig. 2 depicts the m&lel
applicability domain. The plot showed that almoktdataset
compounds had leverage values less than the wéttmieghold
leverage h* (0.35) except for a compound in théning set.
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it had the highest contribution to the anticonvatsactivity of molecular linearity and taken into account the dan Waals
dataset molecule. However, it negative sign showleat volume of added substituent have great influence tlom
increase in the magnitude of this descriptor ineeeahe percent anticonvulsant activity of studied compounds.

protection of studied compounds. Therefore, in@eas

Table 3- Model’s descriptors definition, regressiorstatistics and mean effect values
Symbol Meaning t-stat p-value VIF MF

ATS2v Broto-Moreau autocorrelation-lag2/weighted by Vande -9.470 2.2E-85 9.721 -10.10
Waals volume
VE2_DZv Average coefficient sum of the last eigenvector fro -15.13 1.7E-19 3.091 9.254
Barysz matrix/weighted by Vander Waals volume
SpMax6_Bhm  Largest absolute eigenvalue of Burden matrix-6/welged 11.43 49E-15 3.039 5.467
by relative atomic mass

ASP-6 Average valence path of order 6 -11.61 2.8E-15 1.649 -5.311
RDF45i Radial distribution function at 4.5 interatomic distance 8.078 2.3E-10 3.553 1.685

weighted by first ionization potential

reported that presence of heteroatom like O andckeases the
magnitude of the absolute value of this descrigggending on
She number of hydrogen atom attached to them agid ehbital
type. Also, the presence sulfur and halogen ineretie
magnitude of the absolute value of this descriftkdER AND
HALL, 1976). Furthermore, the presence of multipbeds also
increases the magnitude of the absolute valueififscriptor.

The second descriptor is VE2_DZv define as theager
coefficient sum of the last eigenvector from Bary
matrix/weighted by Vander Waals volume (TODESHINMEB
COSONNI, 2009). It is a spectral index obtainednfrehe
coefficient of the eigenvector associated with tlegest
negative eigenvalue of a given graph-theoreticafimgBarysz)
and the weighting scheme is Vander Waals volume. It
provides discrimination among graph vertices aneklovalues The last descriptor is RDF45i define as radialritigtion
of this descriptor correspond to vertices of lodegree, farther function at 4.5 interatomic distance weighted bstfionization
from the center or from a vertex of higher degigds implied potential (YAP, 2011; TODESHINI AND COSONNI, 2009).
it is an index of branching and it lower value esponding to is a 3D descriptor which provides information absteric
chain graph and a higher value corresponding teoease hindrance, or structure/activity properties, disition of
branching (TODESHINI AND COSONNI, 2009). The MFnteratomic distances, bond distances, ring typésnar and
value of this descriptor was 9.25 (second amongerotimon-planar systems, and atom types in a compoupendéng
descriptors). It contributed relatively high to thmdel and its on the molecular property included in the functias the
positive sign implies a higher numerical valuelo$ tdescriptor weighting scheme (TODESHINI AND COSONNI, 2009).
decrease the percent protection of the studied oangs. RDF45i showed that a linear relationship existsMeen the
Therefore, increased branching in studied compoumdy anticonvulsant activity values of the studied commband 3D
reduce their anticonvulsant activity values. distribution ofthe amount of energy required to remove the most
loosely bounded electron, valence electron of tedlayaseous
atoms in the molecule. It had positive MF (1.68&lues (least
in relation to others). It positive MF implied iiger numerical
value decreases percent protection of the studisgbounds.

4. CONCLUSION

The third descriptor is SpMax6_Bhm define as adatg
absolute eigenvalue of Burden matrix-6/weightedréhative
atomic mass (TODESHINI AND COSONNI, 2009). It'sala
spectra index defined in terms of eigenvalues gizan graph-
theoretical square matrix M (Burden matrix). Algas an index
of molecular branching with smallest values coroesgfing to
chain graphs and the highest to the most brancheghg . .
(TODESHIN! AND COSONNI, 2000) I had MF vae of,, 1" 1€ ieser sy, QSAR el ofsove ey
3.039 (fourth position in relation to others) atglpositive sign Yy ag

. " . seizure was carried out and ATS2v, VE2_Dzv, SpM&\tin,
supported the second descriptor. Addition of highignched ASP-6 and RDF45i molecular descriptors were ideifto
influence the activity of the studied compoundse Téliability
and applicability of the model were defined andrfduo be

good with R (0.899), G (0.866), F (82.03) and?Req (0.706).

substituent may increase the atomic mass of thdiestu

compound and also increase the value of the déscriphis
effect also increases BA which means a decreagelicent

protection of the molecule. Attempt to interpret descriptors contained in thedel showed

The fourth descriptor is ASP-6, defines as averageat anticonvulsant activity of the studied compaginvas
valence path of order 6 (YAP, 2011; KIER AND HAL1976). influenced by the degree of branching and the elait nature
Its a molecular connectivity descriptor obtainedonfi of the atoms in the molecules. The study provideght into
hydrogen-suppressed valence-weighted graph defifeed factors that influenced the activity of study comapds. It also
distinct edges and vertices equal to or greaten #ig in a provides tools that can serve as a knowledge gemera
sequence. It is also an index of branching, howet®walue applicable for In silico designed for new molecukgthin AD
decreases with increase branching. That means i@post the model that in principle would have improved
behavior compare to VE2_DZv and SpMax6_Bhm. Thidato anticonvulsant activities. Thus, serving as a gweéére the
inform it negative MF (-5.311) value and increase the more expensive in vivo and in vitro experiment mbarked
magnitude of the absolute value of this descriptdhe model upon.
increases the percent protection of studied maotecil was
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