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Quantitative structure—activity relationships (Q9ARas been a reliable study in the
development of models that predict biological at&s of chemical substances based on
their structures for the development of novel cloairéntities. This study was carried out on
44 compounds of 4-amidinoquinoline and 10-amidimabeaphthyridine derivatives to
develop a model that relates their structures teirthactivities against Plasmodium
falciparum. Density Functional Theory (DFT) with di& set B3LYP/6-31Gwas used to
optimize the compounds. Genetic Function Algoritf@fA) was employed in selecting
descriptors and building the model. Four modelsevgenerated and the model with best
internal and external validation has internal sqadrcorrelation coefficient4) of 0.9288,
adjusted squared correlation coefficientaf) of 0.9103, leave-one-out (LOO) cross-
validation coefficient ¢.) value of 0.8924 and external squared correlatoefficient ¢°)
value of 0.8188. The model was found to be inflagrusitively by GATS6e, TDB10s and
RDF30v descriptors and negatively by AATSC1ls, GATS8®I C2SP2 descriptors. The
external validation and statistical test conductsghfirm the stability, robustness and the
predictive power of the generated model and canused for designing novel 4-
amidinoquinoline and 10-amidinobenzonaphthyridirerivhtives with better antimalaria
activities.
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1. INTRODUCTION

Malaria remains one of the most lives threaten
infection worldwide with prevalent cases in Africaagion
(WHO 2018). The World Health Organization repo@18) on
malaria revealed that in 2017 a projected two heehdand
nineteen million malaria cases occurred worldwideere 5
countries took almost half of the instances: 25&tnfiNigeria,
11% from Democratic Republic of Congo, 5%
Mozambique and India and Uganda 4% each. And amatst
of 435 000 deaths from the disease worldwide wasrted.

Children below 5 years age are the most affectesmr

responsible for 61% (266 000) of all the deathsally in

the causative organism of malaria infection whicas hb
species infecting humans namd, knowlesiP. malariae, P.

vivax, P. ovale an®. falciparumwhich is the most dangerous
(Cohen et al., 2012)n an effort to find solution to this deadly

illness, many researches are conducted by testimgerous
molecular structures againBtasmodium falciparunstrains to
find out their most effective inhibitors. Quinolimaoiety has
been considered by medicinal chemists as one ofvitad
pharmacophores responsible for imparting antimalaction
(Mishra et al., 2014). Chloroquine, a 4-aminoquim®l has
been used as the foremost antimalarial medicineesitdorld
War Il (Krafts et al., 2012) but its therapeutideet in fighting
this fatal human illness is seriously hindered hg twide
spread of chloroquine resistat falciparum(Uhlemann and
Krishna, 2005); (Plowe, 2005). Mefloquine was usuaked
as a malaria prophylactic medicine (Palmer etl&93,) but its
medicinal significance as an antimalarial drug ésiausly
compromised by toxicity and high cost. Hence, threreains a
pressing need for new and affordable antimalariaigs
(Fidock, 2010).

from

group to the new 4-AMQ series could supply to tmags
biological receptors a potential additional bindsitg, leading

.nto a considerable change in pharmacological poffitem
cchloroquine and its congeners (Ai et al., 2015).idine being

a stronger base than 4-aminoquinoline is an adhditio
advantage to the novel 4-amidino analogs over oblane
(Raczynska et al., 1998)%trong basicity of amidines may
make the new amidines enhanced inhibitors of hemozo
formation and also results in more stable DNA icadation,
which are believed to account for chloroquine aatarial
action (Ai et al., 2015).

Effective and vigorous methods for screening chamic
databases against molecules with known activitieprties
are needed so as to discover novel drug candid@tepsha,

S2010). Quantitative Structure-Activity RelationshipQSAR)

modeling technique gives an efficient way for fimgli the
model that connect structure of chemical compoamktheir
biological action in order to develop novel drughdiaates.
Generally, QSAR study can be defined as the methiod
generating empirical relationships (models) of tf@m
Yi=k'(R1, R,...,Ry) by applying mathematical and statistical
techniques, where jYare biological activities/properties of
molecules, R Ry,...,R, are molecular descriptors (structural
properties) of compounds calculated or experimgntal
measured, and k’ is some empirically establishethemaatical
transformation applied to descriptors to calcuthi property
values for all molecules (Tropsha, 2010). This aesle was
aim at generating QSAR model predicting the adésibf 4-
AMQ and 10-AMB derivatives as potent antimalariaatg.

2. MATERIALS AND METHOD

2.1 Data collection
Forty-four compounds of 4-amidinoquinoline and 10-
amidinobenzonaphthyridine derivatives and theirinaalarial

Recently, 44 novel 4-amidinoquinoline (4-AMQ) andctivities against W2 strain d®lasmodium falciparunwere

10-amidinobenzonaphthyridine (10-AMB) derivativesera

obtained from the article (Ai et al., 2015) anddiberein. The

synthesized and tested to have antimalarial aevihgainst inhibitory antimalarial activities of the compoundported as

D6, W2 and C235 strains . falciparum(Ai et al., 2015)
The new 4-AMQ derivatives differ from chloroquineaimly
by replacement of the 4-amino group of chloroquimi¢h
amidine (4-NHCR=NH) functional groupAddition of amino

ICs0 (NM) were transformed to pke(plCso = -loglCso) for use
in this study. Structures of the molecules andrthetivities
were shown in Table 1.

Table 1 - Molecular structures of 4-amidinoquinolire and 10-amidinobenzonaphthyridine derivatives and their
antimalarial activities.
S/IN Compound Structures ICs0 (NM) plCso
/l/'\(/
1 Al I 296 6.5287
-
<1 N/
g
[
2 A2 )\NH 226 6.6459
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Continued Table 1
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ICs0 (NM) pICso

98.3 7.0074
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275 6.5607
166 6.7799
199 6.7011
617 6.2097
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Continued Table 1
S/IN Compound Structures ICs0 (NM) plCso

12 Al12 T 193 6.7144
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Continued Table 1

Structures

S/IN Compound

21 A21
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Continued Table 1

SIN Compound Structures ICs0 (NM) plCso

| |
43 D43 L v o 80.8 7.0926
N/ /

/\N/\/\N)\N/\/\

P
44 D44 ) mj/o\ k 9.5 8.0223
Cl N /

\ /

2.2 Geometric optimization 2 6 Model Generation

The compounds structures shown in Table 1 were : . . . .
drawn and optimized with chemdraw version 12.0.fwsoe . _Usmg (_Benetlc Function Algorlthm (GFA) t_echmque
. . ._in Material Studio software, regression analysis warried out

(Li et al., 2004) andspartan 14 Version 1.1.4 software (usin ' : ha
. : build the model (using training set), where thependent
B3LYP functional and 6-31G basis set) (Becke, 1993) . : N . .
respectivel Variable is the activities in p¥gand the independent variable
P Y. is the descriptors.

2.3 Molecular descriptors calculation 2.7 Internal validation of the model generated

molecul :;375 ?fO|eCU|2.ram?§isrg£}icr)1 rc?lineOf thzn dOpt'm'igfj The model generated was assessed using Friedman
amidinobenzonaphthyridine derivatives were compuhéth formula (Friedman, 1991) defined as;

PaDEL-Descriptor software version 2.20 (Yap, 2011). SEE

LOF = ————— (2)

. . 1-— c+dp 2
2.4 Normalization and data pretreatment ( TR )

Using Eq. 1, the descriptors obtained were nomeeli where LOF, SEE, ¢, d, p and M are the FriedmantkLa fit
so that each variable will have equal opportunitinfluencing (a measure of fitness of a model), standard erfrestmation,

construction of a good model (Singh, 2013). the number of terms in the model, user-defined ghiog
parameter, total number of descriptors in the mada the
¥ = Xi = Xmin 1) number of compound in the training set respectively
Xmax - Xmin

SEE is defined as;
where X is the normalized descriptors, iX the descriptor’s
value for each molecule, M and Xnax are minimum and Fexp—¥ppg)?
maximum value for each descriptom order to eliminate SEE = |—(y 5 — (3)
redundancy in the normalized data, it was therrgagtd using

Data Pretreatment software gotten from Drug Themakand which is the same as the standard deviation ofrtheel whose
Cheminformatics Laboratory (DTC Lab). value if low a model is said to be good.

2.5 Data Division Correlation coefficient, Rof a built model is another

parameter considered, and the model is good ifalse is
Kennard and Stone’s algorithm (Kennard and Storgoese to 1.0. It is defind as;

1969) was employed to divide the pretreated datatmining
set (70%) with which the model was generated ast get \]
1

Z(Yexp - Yp‘rd)z

(30%) with which the model externally validated.iStwas gz —
Z(Yexp - ymtrn)2

achieved using Data Division software gotten fromDLab.

C))
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where Yorg, Yexp @nd Yorn are the predicted, experimental and

mean experimental activities in the training sespectively. =~ 3(p+1)

The value of Ris varies directly to the number of descriptor@ - T (10)
hence; the model stability is not reliable on hu§, to have a

model that is reliable and stable? iR adjusted according to the2.11 Quality assurance of the generated model
expression:

Rﬁd]- = Internal and external validations parameters piteske
(n-1)(R*~p) (5) in Table 2 give the minimum required values for 8AR
n—-p-1 model to be predictable and reliable (Veerasanal.e2011).

where p is the number of descriptors in the mode a Taple 2 - The minimum required values for a QSAR mdel

number of compounds used in training set. to be generally acceptable.
Symbol Name Value

The cross-validation coefficient,?Q expressed as: R2 Coefficient of determination >0.6
) Pos%) Confidence interval at 95% confident <0.05
v 2 Yexp = Yiern)? Q% Cross validation coefficient <0.5
R? - Qv Difference between fand G, <0.3
where Yoa, Yexp @and Ymen are respectively the predicte Nex testset  Minimum number of external test set  >5
experimental and average experimental activityhim training cR%, Coefficient of determination for Y- >0.5
set. randomization
2.8 External Validation of the model generated 3. RESULTS AND DISCUSSION
The generated model was assessed (using tesbiset) ) ) ] )
external validation by the value ofR expressed as; QSAR models ware built with genetic function
algorithm (GFA) of material studio software to sgugow the
SVpra = Yorp)? chemical structure of 4-amidinoquinoline and 10-

Rfese = 1 (7) amidinobenzonaphthyridine correlate with their bgtal
activities as potent antimalaria. Four QSAR modelare
enerated out of which one model was selected for i

tatistical significance and reported herein aefal

(Yexp - ymtrn)2

where Yy and Yeyp are respectively the predicted an
experimental activities of the test set angu the mean
training set experimental activity. The nearer ¥h&ie is to 1, _

. pICso=14.810925996 AATSC1s
the better the model built (Tropsha et al., 2003). +6.681327289GATS6C

-9.114874822BATS6e

2.9 Y-Randomization test +0.123280114C2SP2

- . - 0.143459063FDB10s

Random Multi-Linear regression models are -0.175971323RDF30v
generated (using training set) in Y-randomizatiest twhose +10.613625719

R? and @ values have to be low for the QSAR model to be

robust (Tropsha et al., 2003). Coefficient of deti@ation vValidation ;

. parameters of the model are presentediaible 3
cR%, whose v_aIue has to be h|gher than 0.5 fo_r theend \ hich s in agreement with the minimum required uvesl
pass the test is also calculated in the Y-randdipizdest and presented in Table 2.

is expressed as;

, , - Table 3 - Validation parameters for the selected nuel
cR, =Rx (R* — Ry) ON S/N  parameter Value

) ) o ) 1 Friedman LOF 0.20237800
where R is the correlation coefficient for Y-randeation and » Rain 0.92883400
R? is the average ‘R’ of the random models. 3 AdjustedR-squared 0.91026900
o i 4 CrossvalidatedRr-squared Q%) 0.89242000
2.10 Applicability domain of the generated model 5 Significant regression Yes
i . 6 Significanceof-regressiorF-value 50.03138900
Leverage () method was used in describing t 7 Critical SORF-value (95%) 2.53977400
applicability domain of the built models (Veerasamet al., g Replicate points 1
2011) and for a chemical compound is expressed as; 9 Experimental errc computed 0.38471400
1T 10  Lack-of-fit points 22
hi = Xi(X" X)X, (9 11  Minimum experimental. error fo 0.00000000
nonsignificant LOF (95%)
where X is matrix of training compounds i. X is the n X 12 R2.y 0.818799

descriptor matrix of the training set compound Xids the X
transpose matrix used to generate the model. Thainga
leverage, his the maximum value for X and is expressed as;
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3D Radial distribution function — 030/ weighted kgn der
Waals volumes.
The model comprises of AutocorrelatioRATSC1s,
GATS6c and GATS6€), Topological C2SP2 and TDB10s Table 4 shows the experimental and predicted
and Radial Distribution Function RDF30v) descriptors. activities and residual values of 4-amidinoquineliand 10-
AATSCl1s is a 2D Centered Moreau-Broto autocorrehatif amidinobenzonaphthyridine derivatives as pofelaismodium
lag 1/ weighted by intrinsic state descriptor basedspatial falciparuminhibitors. The low residual values of experiménta
dependent autocorrelation function measuring thetioeship and predicted activity of the compounds indicateghhi
strenght between atomic or molecular properties space predictability of the model built.
separating them (laglGATS6¢c and GATS6e are 2D Geary
autocorrelation of lag - 6/ weighted by gasteigearge and by
atomic Sanderson electronegativities respectivéty.these
descriptors, the Geary coefficients are any physlwmical
property calculated for each atom of the molecwtach in the
case of GATS6c and GATS6e are gasteiger chargatanaic
Sanderson electronegativities respectivel2SP2 is 2D
carbon type topological descriptors based ohGGpbon bound
to 2 other CarbonsIDB10s is 3D topological distance-based
autocorrelation — lag 10/ weighted by 1-state amF80v is

Table 4 - Experimental and Predicted activities foithe compounds with residual.

Compounds Experimental activity (pl&a) Predicted activity (plé6s) Residual
Al? 6.528708 6.779761 0.251053
A2 6.645892 6.730196 -0.0843
A3 7.007446 7.098008 -0.09056
Ad 6.341989 6.496949 -0.15496
A5 7.443697 6.922351 0.521346
A6 6.899629 6.922351 -0.02272
A7 6.530178 6.53576 -0.00558
A8 6.560667 6.489362 0.071306
A9? 6.779892 6.642563 -0.13733
A10 6.701147 6.909541 -0.20839
All 6.209715 6.134458 0.075257
Al12 6.714443 6.438233 0.27621
A13 7.040959 7.211756 -0.1708

Al42 7.730487 7.219964 -0.51052
A152 7.013228 7.420503 0.407275
A16 7.376751 7.21833 0.15842
Al7 6.595166 6.692652 -0.09749
Al18 7.231362 7.090104 0.141258
A19 8.036212 8.016864 0.019348
A202 8.142668 7.944233 -0.19843
A21 7.8041 7.867564 -0.06346
A22 8.537602 8.483321 0.054281
A23 6.692504 6.992115 -0.29961
B24 6.917215 6.903046 0.014169
A252 7.114639 6.981649 -0.13299
A26 6.917215 7.128248 -0.21103
A272 7.79588 7.220324 -0.57556
A28 6.416801 6.692684 -0.27588
C29 5.407046 5.296375 0.110671
D30 7 6.936253 0.063747
D31 7.387216 7.455029 -0.06781
D322 7.603801 7.731471 0.127671
D33? 8.055517 7.915156 -0.14036
D34 8.013228 7.870129 0.1431
D35? 8.402305 8.091832 -0.31047
E36 8.21467 7.718828 -0.49584
D37 8.703335 7.892822 -0.81051
D38 8.251812 8.182895 -0.06892
D39 8.481486 8.445233 0.036254

D40 7.686133 7.755245 -0.06911
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D412 8.180456 8.591661 0.411205

D42 7.21467 7.138944 0.075726

D43 7.092589 7.379998 -0.28741

D44 8.022276 7.674236 0.34804
aTest set

Table 5 presents the Pearson’s correlation matréffect values of the descriptors GATS6e, TDB10s RBdF30v
Variance Inflation Factor and Mean Effect of thex siindicates that increase in these descriptors iserethe
descriptors in the model. The correlation matrivoved no activities of the molecules while the magnitudedidate the
important inter-correlation among the descriptorghie built extent of their respective influences. The negasigm of the
model except for GATS6¢c and GATS6e. The correlationean effect values of the descriptors AATSC1s, G&d 8nd
between GATS6¢c and GATS6e is indicated by the walfe C2SP2 indicates that increase in these descrigtmease the
Variance Inflation Factor of the two descriptorsieth are activities of the molecules while the magnitudedidate the
greater than 4 but less than 10. Hence the dessif the extent of their respective influences.
built model were good enough. The positive sigrihef mean

Table 5 - Pearson’s correlation, Variance InflationFactor (VIF) and Mean Effect (ME) of descriptors used in the model.
Inter-correlation

Descriptor AATSC1s GATS6c GATS6e C2SP2 TDB10s RDF30v

AATSC1s 1 1.3484 -0.0209
GATS6c -0.01086 1 9.5210 -1.6362
GATS6e 0.221962 0.87143 1 7.6607 1.9844
C2SP2 -0.14295 0.498492 0.245009 1 2.5457 -0.3366
TDB10s 0.252823 -0.11211 -0.01111 0.152104 1 1.6508 0.7158
RDF30v 0.031 0.145263 0.152462 0.302408 -0.30734 1 15174 0.2935

Y- Randomization result shown in table 6 confirms
that the QSAR model built is reliable, robust atabke for

the low R and several trials Qvalues. The result also 10
shows that the model is good and not gotten by cahdor 2 g * TRAIN
the value of cR (>0.5). % y TEST
© 6
Table 6 - Y- Randomization test result. E
Model R R? Q? 2 4
Original 0.96376 0.928834 0.89242 g 2
Randomt 0.303553 0.092144 -0.43608
Random 2 0.434119 0.18846 -0.65337 0
Random 3 0.42922 0.18423 -0.33598 0 5 10
Random 4 0.294643 0.086814 -0.66419 Experimenta| activity
Random 5 0.462415 0.213827 -0.50357
Random 6 0.48295 0.233241 -0.47657
e 7 0.487534 0.237689 0.26116 Fig. 1 - Plot of predicted activity against experirental
Random 8 0.405283 0.164254 2051102 activity of both training and test set.
Random 9 0.412277 0.169972 -0.31391
Random 10 0.624219 0.389649 0.040793 (_g 8:2 .‘ * TRAIN
Random Models Parameters % 0,2 » . TEST
Averager:  0.433621 0 ® e
Averager?:  0.196028 © 0o 4
Average Q%: -0.41151 S
CRp? : 0.82951 5 04
: . 2 -0,6
. . . : £ .08
Fig. 1 present the Plot of predicted activity agai n -
experimental activity of both training and test dehearity -1 0 5 10

of this plot indicates the high predictive powertbé built
model. Plot of standardized residual against erpental Experimental activity

activity presented in Fig. 2 shows the dispersal of

standardized residual values on both sides of Zezoce

there was no systematic error in the generated hiddkli Fig. 2 - Plot of Standardized residual activity agmmst
et al., 2004). experimental activity.
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Fig. 3 shows the Williams plot of the standardized
residuals against the leverages. It is clear thabapounds
are within the applicability domain except for two
influential compounds (i.e., compounds Al and Alfpse
leverage values are greater than the warning lgeefe: =
0.70). This may be due to their molecular structaseit
differs from that of others.

4 -
T * TRAIN
> 3- Y
i)
B2 TEST
= .
S 1 -
N 0 0:0¢3’ ¢
£ 22 I
T-1 %%
s , |
8.2
_3 T T T T T T 1

0 010,20,30,40,50,60,70,80,9
Leverage

Fig. 5 - Plot of the standardized residuals againsthe
leverages (Williams plot).

4. CONCLUSION

QSAR study of 44 compounds of 4-
amidinoquinoline and  10-amidinobenzonaphthyridine
derivatives as potent antimalaria was performed by
employing Genetic Function Approximation (GFA)
technique in Material Studio software to generaber f
models. The best model out the four models gergriads
internal and externalRvalues of 0.92883400 anc308799
respectively was found to be influence by AATSCIs,
GATS6c, GATS6e, C2SP2, TDB10s and RDF30v
descriptors. GATS6e, TDB10s and RDF30v were found t
affect the model positively while AATSC1s, GATS6rda
C2SP2 negatively. The model was validated to bblesta
reliable and robust and can be employed in designaw
4-amidinoquinoline and 10-amidinobenzonaphthyridine
derivatives with better potency to inhibPlasmodium
falciparum.
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