SÍNTESE E CARACTERIZAÇÃO DE NANOESFERAS DE POLIESTIRENO PARA ENCAPSULAMENTO DE NANOPARTICULADO MAGNÉTICO
DOI:
https://doi.org/10.18540/jcecvl3iss8pp1259-1270Palavras-chave:
Nanoesfera, Poliestireno, HipertermiaResumo
Nanopartículas com propriedades magnéticas podem atuar no combate oncológico por meio da hipertermia terapêutica a qual provoca a desnaturação de proteínas e, portanto, o enfraquecimento de células tumorais. A principal vantagem desta técnica é efeitos colaterais mais brandos do que os tratamentos convencionais. Objetivando uma ativação indesejada do sistema imune este trabalho propõe desenvolver uma rota para a obtenção de partículas nanométricas de poliestireno (PS) visando encapsular tais partículas. Foi utilizada uma rota livre de emulsificantes o que garantiria uma maior pureza do sistema. O material sintetizado foi analisado através microscopia eletrônica de varredura, granulometria por difração a laser, análise térmica e espectroscopia no infravermelho. Foi confirmada a obtenção de poliestireno no formato esférico com tamanho médio de partícula de 317 nm ± 58 nm adequada para o uso em sistemas biológicosDownloads
Não há dados estatísticos.
Referências
ALEXIS, Frank et al. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, [s.l.], v. 26, n. 1, p.74-85, jan. 2008. Elsevier BV.
BHATTACHARYA, R; MUKHERJEE, P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, [s.l.], v. 60, n. 11, p.1289-1306, 17 ago. 2008. Elsevier BV.
BOURGEAT-LAMI, E.; LANG, J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media. Journal of Colloid and Interface Science, v. 197, p. 293-308, 1998.
DUMONT, Marcello Rosa. Desenvolvimento de Alumina-? mesoporosa dopada com céria e zircônia pelo processo sol-gel para aplicações em catalisadores automotivos. 2016. 177 f. Tese (Doutorado) – Engenharia Metalúrgica, Materiais e de Minas, UFMG, Belo Horizonte, 2016.
FARIDI-MAJIDI, R.; SHARIFI-SANJANI, N.; AGEND, F. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films, v. 515, p. 368-374, 2006.
FAROKHZAD, O; LANGER, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, [s.l.], v. 58, n. 14, p.1456-1459, 1 dez. 2006. Elsevier BV.
FIGUEROLA, A. et al. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, v. 62, p. 126-143, 2010.
GIUSTINI, A. J. et al. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE, v. 1, n. 1&2, p. 17-32, 2010.
HE, Guangwei; PAN, Qinmin. Synthesis of Polystyrene and Polystyrene/Poly(methyl methacrylate) Nanoparticles. Macromolecular Rapid Communications, [s.l.], v. 25, n. 17, p.1545-1548, 9 set. 2004. Wiley-Blackwell.
HUANG, H.-C. et al. Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release, v. 155, p. 344-357, 2011.
LADJ, Rachid et al. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal Of Pharmaceutics, [s.l.], v. 458, n. 1, p.230-241, dez. 2013. Elsevier BV.
LADJA, R. et al. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal of Pharmaceutics, v. 458, p. 230-251, 2013.
LANDFESTER, Katharina. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angewandte Chemie International Edition, [s.l.], v. 48, n. 25, p.4488-4507, 8 jun. 2009. Wiley-Blackwell.
LIANG, C. Y.; KRIMM, S. Infrared Spectra of High Polymers. Journal Of Polymer Science, p.241-254,1958.
LOIOLA, Adonay R. et al. Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. Journal of Materials Chemistry, [s.l.], v. 18, n. 41, p.4985-4993, set. 2008. Royal Society of Chemistry (RSC).
LUO, Bin et al. Multi-Functional Thermosensitive Composite Microspheres with High Magnetic Susceptibility Based on Magnetite Colloidal Nanoparticle Clusters. Langmuir, [s.l.], v. 26, n. 3, p.1674-1679, 2 fev. 2010. American Chemical Society (ACS). (LOU et al. 2010)
MACHADO, Fabricio; LIMA, Enrique L.; PINTO, José Carlos. Uma revisão sobre os processos de polimerização em suspensão. Polímeros, [s.l.], v. 17, n. 2, jun. 2007. FapUNIFESP (SciELO).
MAHMOUDI, M. et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, v. 63, p. 24-46, 2011.
MISRA, R.; ACHARYA, S.; SAHOO, S. K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug discovery today, v. 15, p. 842-850, 2010.
NANDIYANTO, Asep Bayu Dani et al. Mesopore-free silica shell with nanometer-scale thickness-controllable on cationic polystyrene core. Journal Of Colloid And Interface Science, [s.l.], v. 389, n. 1, p.134-146, jan. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.jcis.2012.08.054.
NANDIYANTO, Asep Bayu Dani et al. Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloids And Surfaces A: Physicochemical and Engineering Aspects, [s.l.], v. 396, p.96-105, fev. 2012. Elsevier BV.
RAMOS, J.; FORCADA, J. Surfactant-Free Miniemulsion Polymerization as a Simple Synthetic Route to a Successful Encapsulation of Magnetite Nanoparticles. Langmuir, v.27, p. 7222-7230, 2011.
RIEGER, J.. THE GLASS TRANSITION TEMPERATURE OF POLYSTYRENE: Results of a round robin test. Journal Of Thermal Analysis, Ludwigshafen, v. 46, n. 1, p.965-972, jan. 1996.
SEM, T. et al. Synthesis and Characterization of Hierachically Ordered Porous Silica Materials. Chemistry of Materials, 16, 2004. 2044-2054.
SHUBAYEV, V. I.; II, T. R. P.; JIN, S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, v. 61, p. 467-477, 2009.
SHUBAYEV, Veronica I.; PISANIC, Thomas R.; JIN, Sungho. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, [s.l.], v. 61, n. 6, p.467-477, jun. 2009. Elsevier BV.
SIEGEL, R.; NAISHADHAM, D.; JEMAL, A. Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, v. 62, p. 10-29, 2012.
WIBAWA, Pratama Jujur et al. Design, Preparation and Characterization of Polystyrene Nanospheres Based-Porous Structure towards UV-Vis and Infrared Light Absorption. Physics Procedia, [s.l.], v. 22, p.524-531, 2011. Elsevier BV.
BHATTACHARYA, R; MUKHERJEE, P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, [s.l.], v. 60, n. 11, p.1289-1306, 17 ago. 2008. Elsevier BV.
BOURGEAT-LAMI, E.; LANG, J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media. Journal of Colloid and Interface Science, v. 197, p. 293-308, 1998.
DUMONT, Marcello Rosa. Desenvolvimento de Alumina-? mesoporosa dopada com céria e zircônia pelo processo sol-gel para aplicações em catalisadores automotivos. 2016. 177 f. Tese (Doutorado) – Engenharia Metalúrgica, Materiais e de Minas, UFMG, Belo Horizonte, 2016.
FARIDI-MAJIDI, R.; SHARIFI-SANJANI, N.; AGEND, F. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films, v. 515, p. 368-374, 2006.
FAROKHZAD, O; LANGER, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, [s.l.], v. 58, n. 14, p.1456-1459, 1 dez. 2006. Elsevier BV.
FIGUEROLA, A. et al. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, v. 62, p. 126-143, 2010.
GIUSTINI, A. J. et al. Magnetic nanoparticle hyperthermia in cancer treatment. Nano LIFE, v. 1, n. 1&2, p. 17-32, 2010.
HE, Guangwei; PAN, Qinmin. Synthesis of Polystyrene and Polystyrene/Poly(methyl methacrylate) Nanoparticles. Macromolecular Rapid Communications, [s.l.], v. 25, n. 17, p.1545-1548, 9 set. 2004. Wiley-Blackwell.
HUANG, H.-C. et al. Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release, v. 155, p. 344-357, 2011.
LADJ, Rachid et al. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal Of Pharmaceutics, [s.l.], v. 458, n. 1, p.230-241, dez. 2013. Elsevier BV.
LADJA, R. et al. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International Journal of Pharmaceutics, v. 458, p. 230-251, 2013.
LANDFESTER, Katharina. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angewandte Chemie International Edition, [s.l.], v. 48, n. 25, p.4488-4507, 8 jun. 2009. Wiley-Blackwell.
LIANG, C. Y.; KRIMM, S. Infrared Spectra of High Polymers. Journal Of Polymer Science, p.241-254,1958.
LOIOLA, Adonay R. et al. Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. Journal of Materials Chemistry, [s.l.], v. 18, n. 41, p.4985-4993, set. 2008. Royal Society of Chemistry (RSC).
LUO, Bin et al. Multi-Functional Thermosensitive Composite Microspheres with High Magnetic Susceptibility Based on Magnetite Colloidal Nanoparticle Clusters. Langmuir, [s.l.], v. 26, n. 3, p.1674-1679, 2 fev. 2010. American Chemical Society (ACS). (LOU et al. 2010)
MACHADO, Fabricio; LIMA, Enrique L.; PINTO, José Carlos. Uma revisão sobre os processos de polimerização em suspensão. Polímeros, [s.l.], v. 17, n. 2, jun. 2007. FapUNIFESP (SciELO).
MAHMOUDI, M. et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, v. 63, p. 24-46, 2011.
MISRA, R.; ACHARYA, S.; SAHOO, S. K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug discovery today, v. 15, p. 842-850, 2010.
NANDIYANTO, Asep Bayu Dani et al. Mesopore-free silica shell with nanometer-scale thickness-controllable on cationic polystyrene core. Journal Of Colloid And Interface Science, [s.l.], v. 389, n. 1, p.134-146, jan. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.jcis.2012.08.054.
NANDIYANTO, Asep Bayu Dani et al. Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloids And Surfaces A: Physicochemical and Engineering Aspects, [s.l.], v. 396, p.96-105, fev. 2012. Elsevier BV.
RAMOS, J.; FORCADA, J. Surfactant-Free Miniemulsion Polymerization as a Simple Synthetic Route to a Successful Encapsulation of Magnetite Nanoparticles. Langmuir, v.27, p. 7222-7230, 2011.
RIEGER, J.. THE GLASS TRANSITION TEMPERATURE OF POLYSTYRENE: Results of a round robin test. Journal Of Thermal Analysis, Ludwigshafen, v. 46, n. 1, p.965-972, jan. 1996.
SEM, T. et al. Synthesis and Characterization of Hierachically Ordered Porous Silica Materials. Chemistry of Materials, 16, 2004. 2044-2054.
SHUBAYEV, V. I.; II, T. R. P.; JIN, S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, v. 61, p. 467-477, 2009.
SHUBAYEV, Veronica I.; PISANIC, Thomas R.; JIN, Sungho. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, [s.l.], v. 61, n. 6, p.467-477, jun. 2009. Elsevier BV.
SIEGEL, R.; NAISHADHAM, D.; JEMAL, A. Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, v. 62, p. 10-29, 2012.
WIBAWA, Pratama Jujur et al. Design, Preparation and Characterization of Polystyrene Nanospheres Based-Porous Structure towards UV-Vis and Infrared Light Absorption. Physics Procedia, [s.l.], v. 22, p.524-531, 2011. Elsevier BV.
Downloads
Publicado
2017-10-04
Como Citar
Elyseu, G. G. M., Dumont, M. R., & Ferreira, R. V. (2017). SÍNTESE E CARACTERIZAÇÃO DE NANOESFERAS DE POLIESTIRENO PARA ENCAPSULAMENTO DE NANOPARTICULADO MAGNÉTICO. The Journal of Engineering and Exact Sciences, 3(8), 1259–1270. https://doi.org/10.18540/jcecvl3iss8pp1259-1270
Edição
Seção
Materials Science and Engineering