AN INSILCO STUDY OF 1,1-DIFLUORO-2-METHOXYPROPANE REACTION MECHANISM WITH THE BROMINE MONOXIDE (BrO) RADICAL
DOI:
https://doi.org/10.18540/jcecvl5iss1pp0090-0099Palabras clave:
1, 1-difluoro-2-methoxypropane, DFT, CFCs, BrOResumen
An Insilco study was carried out on the thermochemistry, mechanism and kinetics of the Hydrogen abstraction reaction of 1,1-difluoro-2-methoxypropane (CH3CH(OCH3)CHF2) with the Bromine monoxide radical (BrO) using the Density Functional Theory (DFT) based M06-2X/6-311++G** method. The energy values were immediately improved via optimization at DFT/M06-2X/6-311++G(2df,2p) level (single-point calculations) of the reacting species involved. The Monte Carlo search on the investigating hydrofluoroether (HFE) showed nine conformers with the lowest global minimum conformer being predicted and considered for this work. The results of this study showed that the atmospheric oxidation reaction of CH3CH(OCH3)CHF2 with the BrO radical proceeded in four (4) plausible reaction routes. The total experimental rate of 4.34*10-06 cm-3 molecule-1 sec-1 for HFE + BrO reaction was estimated with atmospheric lifetime (ALT)/global warming potential (GWP) of 1.80 years and 165.30 respectively. The 3D potential energy surfaces (PES) for the reaction was however constructed at absolute temperature of 298.15 K.
Descargas
Citas
BAIDYA, B.; LILY, M.; CHANDRA, A.K. Theoretical study on atmospheric chemistry of CHF2CF2CH2OH: Reaction with OH radicals, lifetime and global warming potentials. Computational and Theoretical Chem., v. 1119, p. 1 – 9, 2017.
CHRISTENSEN, L.K.; SEHESTED, J.; NIELSEN, O. J.; BILDE, M.; WALLINGTON, T. J.; GUSCHIN, A.; MOLINA, L. T.; MOLINA, M. J. Atmospheric Chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH Radicals and Fate of C4F9OCH2CH2O(•) and C4F9OCHO(•)CH3 Radicals. J. Phys. Chem. A., v. 102, n. 25, p. 4839-4845, Feb./April. 1998.
DEKA, R.C.; MISHRA, B.K. Theoretical studies on kinetics, mechanism and thermochemistry of gas – phase reactions of HFE – 449mec-f with OH radicals and Cl atom. J Molecular Graphics and Modeling, v. 53, p. 23-30, Jul. 2014.
DE CARVALHO, E. F. V.; ROBERTO-NETO, O. Effects of Multidimensional Tunneling in the Kinetics of Hydrogen Abstraction Reactions of O (3P) with CH3OCHO. Journal of Computational Chemistry, p. 1-9, Jan./Feb. 2018.
ESPINOSA-GARCIA, J. Ab Initio and Variational Transition – State Theory of the CF3CF2OCH3 + OH Reaction Using Integrated Methods: Mechanism and Kinetics. J. Phys. Chem. A., v. 107, n. 10, p. 1618- 1626, Jul./Dec. 2003.
GALANO, A.; ALVAREZ-IDABOY, J.R.; FRANCISCO-MARQUEZ, M. Mechanism and Branching Ratio of Hydroxyl Ethers + OH Gas Phase Reactions: Relevance of H Bond Interactions. J. Phys. Chem. A., v. 144, n. 28, p. 7525-7536, April/May. 2010.
GARFIELD, E. Ozone-Layer Depletion: Its Consequences, the
Causal Debate, and International Cooperation. Essays of an Information Scientist: Science Literacy, Policy, Evaluation and other Essays, v. 11, p. 39-49, 1988.
GOOD, D.A.; FRANCISCO, J.S.; JAIN, A.K.; WUEBBLES, D.J. Lifetime and global warming potentials for Dimethyl ether and for fluorinated ethers: CH3OCH3 (E143a), CHF2OCHF2 (E134), CHF2OCF3 (E125). Journal of Geophysical Research, v. 103, n. D21, p. 28186-28186, Nov. 1998.
GOUR, N.K.; MISHRA, B.K.; HUSSAINI, I.; DEKA, R.C. Theoretical Investigation on the kinetics and Thermochemistry of H-atom abstraction reactions of 2-chloroethyl methyl ether (CH3OCH2CH2Cl) with OH radical at 298 K. struct. Chem., p. 1 – 9, march/May. 2016.
GUO, Q.; ZHANG, N.; UCHIMARU, T.; CHEN, L.; QUAN, H.; MIZUKADO, J. Atmospheric chemistry of cyc-CF2CF2CF2CH=CH–: Kinetics, products, and mechanism of gas-phase reaction with OH radicals, and atmospheric implications. Atmospheric Environment, v. 179, p. 69-76, Jan./Feb. 2018.
HASHEMI, S.R.; SAHEB, V. Theoretical Studies on the Mechanism and Kinetics of the Hydrogen Abstraction Reactions of threo- CF3CHFCHFC2F5 and erthro- CF3CHFCHFC2F5 (HFC-43-10mee) by OH radicals. Computational & Theoretical Chemistry, p. 1-28, May/Sept. 2017.
HURLEY, M. D.; WALLINGTON, T. J.; ANDERSEN, M. P. S.; ELLIS, D. A.; MARTIN, J. W.; MABURY, S. A. Atmospheric Chemistry of Fluorinated Alcohols: Reaction with Cl Atoms and OH Radicals and Atmospheric Lifetimes. J. Phys. Chem. A, v. 108, n. 11, p. 1973-1979, Oct./Jan. 2004.
LASZLO, B.; ROBERT, E.H.; MICHAEL, J.K.; ANDRZEJ, W.M. Kinetic studies of the reactions of BrO and IO radicals. Journal of Geophysical Research, v. 102, n. D1, p. 1523-1532, Jan. 1997.
M A B U R Y, S. A.; YOUNG, C. J.; HURLEY, M. D.; WALLINGTON, T. J. Atmospheric Lifetime and Global Warming Potential of a Perfluoropolyether. Environ. Sci. Technol., v. 40, n. 7, p. 2242-2246, Oct./Jan. 2006.
MOLINA, J.M.; ROWLAND, F.S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone. Nature, v. 249, p. 810-812, Jun. 1974.
ORKIN, V. L.; VILLENAVE, E.; HUIE, R. E.; KURYLO, M. J. Atmospheric Lifetimes and Global Warming Potentials of Hydrofluoroethers: Reactivity toward OH, UV Spectra, and IR Absorption Cross Sections. J. Phys. Chem. A, v. 103, n. 48, p. 9770-9779, May/Sept. 1999.
PAPADIMITRIOU, V.C.; PAPANASTASIOU, D.K.; STEFANOPOULOS, V.G.; ZARAS, A.M.; LAZAROU, Y.G.; PAPAGIANNAKOPOULOS, P. Kinetics study of the Reactions of Cl Atoms with CF3CH2CH2OH, CF3CF2CH2OH, CHF2CF2CH2OH and CF3CHFCF2CH2OH. J. Phys. Chem. A., v. 111, n. 45, p. 11608 – 11617. Jun./Aug. 2007.
PHILIP, M. Advanced chemistry. Cambridge Low Price Edition, UK: 1996.
PRATHER, M.; SPIVAKOVSKY, C.M. Tropospheric OH and the Lifetimes of Hydrochlorofluorocarbons. Journal of Geophysical Research, v. 95, n. D11, 18723-18729, Oct. 1990.
ROHRER, F.; BERRESHEIM, H. Strong correlation between levels of Tropospheric hydroxyl radical and solar ultraviolet radiation. Nature, v. 442, p. 184-187, Jul. 2006.
ROUSSEL, M. R. Transition State Theory (Chemistry and Biochemistry), 3rd ed. University of Lethbridge, Canada: 2009.
ROWLAND, F.S. Stratospheric Ozone depletion. Phil. Trans. R. Soc. B, v. 361, p. 769-790. 1996.
ROWLEY, D. M.; FERRACCI, V. Kinetic studies of the BrO + ClO cross-reaction over the range T = 246–314 K. Phys. Chem., v. 16, p. 1182-1196, Aug./Oct. 2014.
SAKO, T.; SATO, M.; NAKAZAWA, N.; OOWA, M.; YASUMOTO, M.; ITO, H.; YAMASHITA, S. Critica Properties of Fluorinated Ethers. J. Chem. Eng. Data, v. 41, n. 4, p. 802-805, Dec./May. 1996.
SCHLAGER, H.; GREWE, V.; ROIGER, A. Chemical composition of the atmosphere. Springer, p. 17-35, 2012.
SIAKA, A.A.; UZAIRU, A.; IDRIS, A.; ABBA, H. Thermodynamics and Kinetics of Spiro – Heterocycle Formation Mechanism: Computational Study. Phys. Chem. Res., v. 5, n. 3, p. 439-446, Jan./Feb. 2017.
SPARTAN ’14 v 114. Wave function, Inc., Irvine. 2013. TRUHLAR, D. G.; GARRETT, B. C.; KLIPPENSTEIN, S. J. Current Status of Transition-State Theory. J. Phys. Chem., v. 100, n. 31, p.12771-12800, Dec./Feb. 1996.
WANG, Y-N.; CHEN, J.; LI, X.; WANG, B.; CAI, X.; HUANG, L. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, Validation, applicability domain and mechanistic interpretation. Atmospheric Environment, v. 43, p. 1131-1135, Oct./Nov. 2009.
WHITE, C.W.; MARTELL, J.M. Hydrogen Abstraction from Fluorinated Ethyl Methyl Ether System by OH Radicals. Advances in Physical Chemistry, v. 2016, n. 3740278, p. 1-10, Jul./Nov. 2015.
WOFSY, S. C.; MCELROY, M. B.; YUNG, Y. L. The chemistry of atmospheric Bromine. Geophysical Research Letters, v. 2, n. 6, p. 215-218, Jun. 1975.
WORLD METEOROLOGICAL ORGANIZATION PROJECT – Report No. 52 Scientific Assessment of Ozone Depletion: Geneva Switzerland, ISBN: 9966-7319-6-2. 2010.
YANG, L.; LIU, J-Y.; WANG, L.; HE, H-Q.; WANG, Y.; LI, Z-S. Theoretical Study of the Reactions CF3CH2OCHF2 + OH/Cl and its Product Radicals and Parent Ether (CH3CH2OCH3) with OH. J Comput. Chem., v. 29, n. 4, p. 550–561, Jan./Jul. 2007.
YE, J-T.; BAI, F-Y.; PAN, X-M. Computational Study of H-abstraction reactions from CH3OCH2CH2Cl/CH3CH2OCH2CH2Cl by Cl atom and OH radical and fate of alkoxy radicals. Environ. Sci. Pollut. Res., v. 23, p. 23467–23484, may/Aug. 2016.