Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions

Auteurs

DOI :

https://doi.org/10.18540/jcecvl8iss7pp14648-01i

Mots-clés :

computation, combinatorics, binomial coefficient

Résumé

Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineering science. The combinatorial geometric series with binomial expansions and its theorems refer to the methodological advances which are useful for researchers who are working in computational science. Computational science is a rapidly growing multi-and inter-disciplinary area where science, engineering, computation, mathematics, and collaboration use advance computing capabilities to understand and solve the most complex real-life problems.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Téléchargements

Publiée

2022-09-22

Comment citer

Annamalai, C. (2022). Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions. The Journal of Engineering and Exact Sciences, 8(7), 14648–01i. https://doi.org/10.18540/jcecvl8iss7pp14648-01i

Numéro

Rubrique

Invitation/Convite

Articles les plus lus par le même auteur ou la même autrice