Influence of specific weight and wall friction coefficient on normal pressures in silos using the Finite Element Method
DOI:
https://doi.org/10.13083/reveng.v29i1.12336Palavras-chave:
Jenike shear test, Maximum normal pressures, Numerical model, Properties of stored products, SimulationResumo
The objective of this work was to develop models using the Finite Element Method (FEM) to assess the maximum normal pressures in the static condition in silos using different wall friction coefficient and specific weight of the stored product compared to the pressures obtained by the Eurocode 1, part 4. The geometries of the silos models were developed based on the dimensions of the experimental station at the Universidad de Leon (Spain). The material properties were obtained by Jenike shear cell tests and were used to generate the models by the MEF. 3D models were generated varying the friction coefficient (0.2, 0.4, and 0.6) and the specific weight (6; 7.5 and 9 kN / m3). It was verified that the models by FEM follow the theory of pressures in silos: normal pressures increase due to the increase in specific weight and decrease due to the increase in the friction coefficient. Moreover, the maximum normal pressure occurs at the hopper silo transition. The experimental pressures (FEM models) compared with Eurocode 1, part 4 allowed to validate the models developed, presenting trends of similar values to those found by the MEF. The experimental models demonstrated that the influence of the wall friction coefficient and specific weight significantly interferes with the pressures in slender silos.
Downloads
Referências
AYUGA, F.; AGUADO, P.; GALLEGO, E.; RAMIREZ, A. Experimental tests to validate numerical models in silos design. 2006 ASABE Annual International Meeting, v. 0300, n. 06, 2006.
BROWN, C. J.; LAHLOUH, E. H.; ROTTER, J. M. Experiments on a square planform steel silo. Chemical Engineering Science, v. 55, n. 20, p. 4399–4413, 2000.
BROWN, C. J.; NIELSEN, J. Silos: Fundamentals of theory, behaviour and design. London: [s.n.].
BYWALSKI, C.; KAMI?SKI, M. A case study of the collapse of the over-chamber reinforced concrete ceiling of a meal silo. Engineering Structures, v. 192, n. March, p. 103–112, 2019.
CALIL, J. C.; CHEUNG, A. B. Silos: pressões, fluxo, recomendações para o projeto e exemplo de cálculo. São Carlos: [s.n.].
CEN. EN 1991-4:2006. Eurocode 1: Actions on Structures. Part 4: Silos and Tanks. Brussels: [s.n.].
CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira 2019/2020Acompanhamento da Safra Brasileira de Grãos 2019/2020. [s.l: s.n.]. Disponível em: <https://www.conab.gov.br/info-agro/safras>.
COUTO, A.; RUIZ, A.; AGUADO, P.J. Measuring pressures in a slender cylindrical silo for storing maize. Filling, static state and discharge with different material flow rates and comparison with Eurocode 1 part 4. Computers and Electronics in Agriculture, v. 96, p. 40–56, 2013.
COUTO, A.; RUIZ, A.; AGUADO, P. J. Design and instrumentation of a mid-size test station for measuring static and dynamic pressures in silos under different conditions - Part I: Description. Computers and Electronics in Agriculture, v. 85, p. 164–173, 2012.
DIN. DIN 1055-6: Basis of design and actions on structures – Part 6: design 623 loads for buildings and loads in silo bins. Berlin, Verlaz: 2005
DOGANGUN, A.; KARACA, Z.; DURMUS, A.; SEZEN, H. Cause of damage and failures in silo structures. Journal of Performance of Constructed Facilities, v. 23, n. 2, p. 65–71, 2009.
DPE - DIRETORIA DE PESQUISA E COORDENAÇÃO AGROPECUÁRIA. IBGE - Pesquisa de Estoques 2o semestre de 2019. [s.l: s.n.].
DRUCKER, D. C.; PRAGER, W. Soil mechanics and plastic analysis or limit design. Quart. Appl. Math, v. 10, n. 2, p. 157–165, 1952.
GALLEGO, E.; ROMBACH, G.A.; NEUMANN, F.; AYUGA, F. SIMULATIONS OF GRANULAR FLOW IN SILOS WITH DIFFERENT FINITE ELEMENT PROGRAMS: ANSYS VS. SILO. Transactions of the ASABE, v. 53, n. 3, p. 819–829, 2010.
GALLEGO, E.; RUIZ, A.; AGUADO, P. J. Simulation of silo filling and discharge using ANSYS and comparison with experimental data. Computers and Electronics in Agriculture, v. 118, p. 281–289, 2015.
GANDIA, R.M.; GOMES, F.C.; PAULA, W.C. DE, JUNIOR; E.A. DE O.; RODRIGUEZ, P.J.A. Static and dynamic pressure measurements of maize grain in silos under different conditions. Biosystems Engineering, v. 209, p. 180–199, 2021.
GUTIÉRREZ, G.; COLONNELLO, C.; BOLTENHAGEN, P.; DARIAS, J.R.; PERALTA-FABI, R.; BRAU, F.; CLÉMENT, E. Silo collapse under granular discharge. Physical Review Letters, v. 114, n. 1, p. 5–9, 2015.
HÄRTL, J.; OOI, J.Y.; ROTTER, J.M.; WOJCIK, M.; DING, S.; ENSTAD, G.G. The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design, v. 86, n. 4, p. 370–378, 2008.
HOLST, J.M.F.G.; OOI, J.Y.; ROTTER, J.M.; RONG, G.H. Numerical Modeling of Silo Filling. I: Continuum Analyses. Journal of Engineering Mechanics, v. 125, n. 1, p. 94–103, 1999.
INTERNACIONAL ORGANIZATION FOR STANDARDIZATION. ISO 11697:2012. Bases for design of strutures - Loads due to bulk materials. [s.l: s.n.].
JANSSEN, H. A. Versuche uber getreidedruck in silozellen. Z. Ver. Dtsch. Ing, v. 39, n. 35, p. 1045–1049, 1895.
JENIKE, A. W.; JOHANSON, J. R.; CARSON, J. W. Bin loads—part 3: mass-flow bins. Journal of Manufacturing Science and Engineering, Transactions of the ASME, v. 95, n. 1, p. 6–12, 1973.
MOYA, M.; AYUGA, F.; GUAITA, M.; AGUADO, P. MECHANICAL PROPERTIES OF GRANULAR AGRICULTURAL MATERIALS. Transactions of the ASABE, v. 45, n. 5, p. 1569–1577, 2002.
MOYA, M.; GUAITA, M.; AGUADO, P.; AYUGA, F. MECHANICAL PROPERTIES OF GRANULAR AGRICULTURAL MATERIALS, PART 2. Transactions of the ASABE, v. 49, n. 1998, p. 479–490, 2006.
NETO, J. P. L.; NASCIMENTO, J. W. B. DO; SILVA, R. C. FORÇAS DE ATRITO EM SILOS VERTICAIS DE PAREDES LISAS EM DIFERENTES RELAÇÕES ALTURA/DIÂMETRO. Eng. Agríc., Jaboticabal, v. 34, n. 1, p. 8–16, 2014.
PARDIKAR, K.; ZAHID, S.; WASSGREN, C. Quantitative comparison of experimental and Mohr-Coulomb finite element method simulation flow characteristics from quasi two-dimensional flat-bottomed bins. Powder Technology, v. 367, p. 689–702, 2020.
RAMÍREZ, A.; NIELSEN, J.; AYUGA, F. On the use of plate-type normal pressure cells in silos. Part 1: Calibration and evaluation. Computers and Electronics in Agriculture, v. 71, n. 1, p. 71–76, 2010.
RUIZ, A.; COUTO, A.; AGUADO, P. J. Design and instrumentation of a mid-size test station for measuring static and dynamic pressures in silos under different conditions - Part II: Construction and validation. Computers and Electronics in Agriculture, v. 85, p. 174–187, 2012.
SCHURICHT, T.; FURLL, C.; EENSTAD, G. G. Full scale silo tests and numerical simulations of the „cone in cone” concept for mass flow. In: Handbook of Powder Technology. [s.l.] Elsevier Science BV, 2001. v. 10p. 175–180.
SCHWAB, C. V.; ROSS, I.J.; WHITE, G.M.; COLLIVER, D.G. WHEAT LOADS AND VERTICAL PRESSURE. v. 37, n. 5, p. 1613–1619, 1994.
SUN, W.; ZHU, J.; ZHANG, X.; WANG, C.; WANG, L.; FENG, J. Multi-scale experimental study on filling and discharge of squat silos with aboveground conveying channels. Journal of Stored Products Research, v. 88, p. 101679, 2020.
SUN, Y.; WANG, Y. Collapse reasons analysis of a large steel silo. Advanced Materials Research, v. 368–373, p. 647–650, 2012.
TENG, B. J. PLASTIC COLLAPSE AT LAP JOINTS IN PRESSURIZED CYLINDERS UNDER AXIAL LOAD. v. 120, n. 1, p. 23–45, 1994.
TENG, J. G.; LIN, X. Fabrication of small models of large cylinders with extensive welding for buckling experiments. Thin-Walled Structures, v. 43, n. 7, p. 1091–1114, 2005.
TENG, J. G.; ROTTER, J. M. Plastic collapse of restrained steel silo hoppers. Journal of Constructional Steel Research, v. 14, n. 2, p. 139–158, 1989.
TENG, J. G.; ZHAO, Y.; LAM, L. Techniques for buckling experiments on steel silo transition junctions. Thin-Walled Structures, v. 39, n. 8, p. 685–707, 2001.
TENG, J.; ROTTER, J. M. Collapse Behavior and Strength of Steel Silo Transition Junctions. Part I: Collapse Mechanics. Journal of Structural Engineering, v. 117, n. 12, p. 3587–3604, 1991.
WALKER, D. An approximate theory for pressures and arching in hoppers. Chemical Engineering Science, v. 22, n. 3, p. 486, 1967.
WALTERS, J. K. A theoretical analysis of stresses in axially-symmetric hoppers and bunkers. Chemical Engineering Science, v. 28, n. 3, p. 779–789, 1973a.
WALTERS, J. K. A theoretical analysis of stresses in silos with vertical walls. ChemicalEngineering Science, v. 28, p. 13–21, 1973b.
ZHAO, Q.; JOFRIET, J. C. Structural loads on bunker silo walls: Numerical study. Journal of Agricultural Engineering Research, v. 51, n. C, p. 1–13, 1992.
ZHAO, Y.; TENG, J. G. Buckling experiments on steel silo transition junctions. II: Finite element modeling. Journal of Constructional Steel Research, v. 60, n. 12, p. 1803–1823, 2004.
ZHONG, Z.; OOI, J. Y.; ROTTER, J. M. The sensitivity of silo flow and wall stresses to filling method. Engineering Structures, v. 23, n. 7, p. 756–767, 2001.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Engenharia na Agricultura - Reveng
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
O(s) autor(es) autoriza(m) a publicação do texto na da revista;
O(s) autor(es) garantem que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
É reservado aos editores o direito de proceder a ajustes textuais e de adequação às normas da publicação.
A partir da submissão, o autor estará cedendo integralmente seus direitos patrimoniais da obra à publicação, permanecendo detentor de seus direitos morais (autoria e identificação na obra) e de acordo com a Licença Creative Commons, CC BY-NC.