Temporal distribution of rainfall in the Far West region of Santa Catarina, Brazil
DOI:
https://doi.org/10.13083/reveng.v29i1.12401Keywords:
heavy rainfall, design hyetograph, hydrologyAbstract
In the definition of design rainfall, one must determine the temporal distribution of rainfall. In Brazil there are few studies on the temporal distribution of heavy rainfall. This work aimed to characterize the temporal distribution of intense rainfall for the Far West region of Santa Catarina. Data from four rainfall stations were used. The rainfall was individualized and classified into four types according to the quartile with the highest intensity. With the total of 3212 rainfall events it was observed that the most frequent rains are of type I (37.6%) followed by types II (32.3%). The time variation curves of the four rainfall stations show differences of less than 5% in relation to the regional average. No significant seasonal differences were observed, however significant differences were found with respect to rainfall duration. The values of the temporal distribution with a probability of 50% were necessary for the rains of the four quartiles, as well as for the duration ranges, allowing the designer to adopt the most appropriate values according to the characteristics of the project.
Downloads
References
AL-RAWAS, G. A.; VALEO, C. Characteristics of rainstorm temporal distributions in arid mountainous and coastal regions. Journal of Hydrology, v.376, n.1-2, p.318-326, 2009.
AZL, M.; RAO, R. Development of Huff curves for Peninsular Malaysia. Journal of Hydrology, v.388, n.1-2, p.77–84, 2010.
BACK, Á. J.; RODRIGUES. M. L. G. Characterization of temporal rainfall distribution in Florianópolis, Santa Catarina, Brazil. Revista Brasileira de Climatologia, v.28, p.201-2019, 2021.
BACK, Á. J. Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil. Acta Scientiarum Agronomy, v.33, n.4, p.583-588, 2011.
BACK, Á. J. Informações climáticas e hidrológicas dos municípios catarinenses (com programa HidroClimaSC). Florianópolis: Epagri, 2020.
BACK, Á. J.; SONEGO, M.; POLA, A. C. Distribuição temporal de chuvas intensas de Chapeco, SC. In: Anais do XXI Simpósio Brasileiro de Recursos Hídricos, 1-8, Brasília, ABRH, 2015.
BEZAK, N.; SRAJ, M.; RUSJAN, S.; MIKOS, M. Impact of the rainfall duration and temporal rainfall distribution defined using the huff curves on the hydraulic flood modelling results. Geosciences, v.8, n.2, p.69, 2018.
BONNIN, G. M.; MARTIN, D.; LIN, B.; PARYZBOK, T.; YEKTA, M.; ILEY, D. (2006) Precipitation-frequency atlas of the United States, National Weather Service, NOAA Atlas 14, v. 2, Silver Springs, Maryland, USA, 2006.
BONTA, J. V. Development and utility of Huff curves for disaggregating precipitation amounts. Applied Engineering in Agriculture, v.20, n.5, p.641–653, 2004.
BONTA, J. V.; RAO, A. R. Factors affecting development of Huff curves. Transactions of the ASAE, v. 30, n.6, p.1689–1693, 1987.
CAMPOS, M. R.; MACHADO, R. Time distribution of intense rainfalls at Campinas, Brazil. International Journal of Advanced Engineering Research and Science (IJAERS), v.5, n.12, p.107-117, 2018.
CANHOLI, A. P. Drenagem urbana e controle de enchentes. São Paulo: Oficina de Textos. 2005.
CHOW, V. T.; MAIDMENT, D. R.; MAYS, L. W. Applied Hydrology. McGraw-Hill: New York, NY, USA, 1998.
CRUCIANI, D. E.; MACHADO, R. E.; SENTELHAS, P. C. Modelos da distribuição temporal de chuvas intensas em Piracicaba, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v.6, n.1, p.76-82, 2002.
DNIT- Departamento Nacional de Infraestrutura de Transportes. Manual de hidrologia básica para estruturas de drenagem. Rio de Janeiro: IPR Publicação, 2005.
DOLSAK, D.; BEZAK, N.; SRAJ, M. Temporal characteristics of rainfall events under three climate types in Slovenia. Journal of Hydrology, v.541, p.1395–1405, 2016.
EL-SAYED, E. A. H. Development of synthetic rainfall distribution curves for Sinai area. Ain Shams Engineering Journal, v.9, n.4, p.1949–1957, 2018.
EWEA, H. A.; ELFEKI, A. M.; AL-AMRI, N. S. Development of Intensity–Duration–Frequency curves for the Kingdom of Saudi Arabia. Geomatics, Natural Hazards and Risk, p.1-15, 2016.
GHASSABI, Z.; KAMALI, G. A.; MESHKATEE, A. H.; HAJAM, S.; JAVAHERI, N. Time distribution of heavy rainfall events in south west of Iran. Journal of Atmospheric and Solar-Terrestrial Physics, v.145, p:53–60, 2016.
GORDJI, L.; BONTA, J. V.; ALTINAKAR, M. S. Climate-related trends of within-storm intensities using dimensionless temporal-storm distributions. Journal of Hydrologic Engineering, v.25, n.2, 2020.
GUO, J. C. Y.; HARGADIN, K. (2009) Conservative design rainfall distribution. Journal of Hydrologic Engineering, v.14, n.5, 2009.
HUFF, F. A. Time distribution of rainfall in heavy storms. Water Resources Research, v.3, n.4, p.1007-1019, 1967.
HUFF, F. A. Time distribution of heavy rainstorms in Illinois. Illinois State Water Survey: Circular 173, 1990.
HUFF, F. A.; ANGEL, J. R. Rainfall Frequency Atlas of the Midwest. Illinois State Water Survey: Champaign Bulletin 71, 1992.
LOUKAS, A.; QUICK, M. C. Spatial and temporal distribution of storm precipitation in southwestern British Columbia. Journal of Hydrology, v.174, n.1, p.:37-56, 1996.
MOLIN, L.; DE VILLA, I.; GOULART, J. P.; MAESTRINI, A. P. Distribuição temporal de chuvas intensas em Pelotas, RS. Revista Brasileira de Recursos Hídricos, v.1, n.2, p.45-51, 1996.
NA, W.; YOO, C. Evaluation of rainfall temporal distribution models with annual maximum rainfall events in Seoul, Korea. Water, v.10, n.1468, 2018.
National Environment Research Council -NERC. Flood studies report, Vol. II: Meteorological studies. London, UK: Natural Environment Research Council, 1975.
Natural Resources Conservation Service. Technical Release 55 (TR-55). Urban hydrology for small watersheds, Natural Resources Conservation Service, Engineering Division, Washington, D.C. 1986
PAN, C.; WANG, X.; LIU, L.; HUANG, H.; WANG, D. Improvement to the Huff curve for design storms and urban flooding simulations in Guangzhou, China. Water, v.9, n.411, 2017.
PARK, J.; KANG, T.; LEE, S. A Temporal Distribution Method of Probable Rainfall for Planning a Storm Sewer Network in an Urban Area. Journal Korean Society of Hazard Mitigation, v.19, n.1, p.85-94, 2019.
PERICA, S.; MARTIN, D.; PAVLOVIC, S.; ROY, I.; ST. LAURENT, M.; TRYPALUK, C.; BONNIN, G. NOAA atlas 14: Precipitation frequency atlas of the United States (Vol. 8). Silver Spring, MD: NOAA, 2013.
POWELL, D.N.; KHAN, A. A.; AZIZ, N. M.; RAIFORD, J. P. Dimensionless Rainfall Patterns for South Carolina. Journal of Hydrologic Engineering, v.12, p.130-133, 2007.
PRODANOVIC, P.; SIMONOVIC, S. P. Generation of synthetic design storms for the Upper Thames River Basin. Water Resources Research Report. 15. 2004.
SÃO PAULO. Secretaria Municipal de Desenvolvimento Urbano. Manual de drenagem e manejo de águas pluviais: aspectos tecnológicos, diretrizes para projetos. São Paulo: SMDU. 2012.
SELUCHI, M.; BEU, C.; ANDRADE, K. M. Características das frentes frias causadoras de chuvas intensas no leste de Santa Catarina. Revista Brasileira de Meteorologia, v.32, n.1, p.25-37, 2017.
SENTELHAS, P. C.; CRUCIANI, D. C; PEREIRA, A. S.; VILLA NOVA, N. A. Distribuição horária de chuvas intensas de curta duração: um subsídio ao dimensionamento de projetos de drenagem superficial. Revista Brasileira de Meteorologia, v.13, n.1, p.45-52, 1998.
SILVEIRA, A. L. Cumulative equations for continuous time Chicago hyetograph. Brazilian Journal of Water Resources, v.21, n.3, p.646-651, 2016.
TUCCI, C. E. M. Hidrologia: Ciência e aplicação. Porto Alegre, Editora da UFRGS/ABRH. 2015.
VENEZIANO, D.; VILLANI, P. Best linear unbiased design hyetograph. Water Resources Research, v.5, n.9,2725–2738, 1999.
WISCHMEIER, W. H.; SMITH, D. D. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys Union, v.39, p. 285-91, 1958.
YEN, B. C.; CHOW, V. T. Design hyetographs for small drainage structures. Journal of Hydraulics Division, v. 106, n.6, p.1055-1076, 1980.
YIN, S.Q.; XIE, Y.; NEARING, M. A.; GUO, W. I.; ZHU, Z. Intra-storm temporal patterns of rainfall in China using Huff curves. Transactions of the ASABE, v.59, n.6, p.1619-1632, 2016.
ZEIMETZ, F.; SCHAEFLI, B.; ARTIGUE, G.; HERNÁNDEZ, J. G.; SCHLEISS, A. J. Swiss rainfall mass curves and their influence on extreme flood simulation. Water Resources Management, v.32, p.2625–2638, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Engenharia na Agricultura - Reveng
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
The author(s) authorize(s) the publication of the text in the journal;
The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
From submission, the author is fully conceding the paper's patrimonial rights to the publication, but retaining the owner of its moral rights (authorship and paper's identification) according to Creative Commons Attribution-Noncommercial.