What is the contribution of piglet waste in the first week after weaning to greenhouse gas emissions?

Authors

DOI:

https://doi.org/10.13083/reveng.v30i1.13908

Keywords:

emission, environment, gain of weight, greenhouse gases, swine

Abstract

This study aims to characterize the waste of weaned piglets and estimate the emissions of N2O in kg of CO2 eq/kg of weight gain in the first week of housing. Primary data were obtained in the first week after weaning of piglets to identify how much waste from this animal category may affect the environment. The life cycle assessment was applied to verify the amount of manure and the emission of nitrous oxide (N2O) considering the weight gain (WG) of piglets in the first post-weaning week. Eight waste collections were carried out in two lots representing an average of 8,099 animals with initial and final weight of 5.01 and 5.84 kg, respectively. The production of residues was 0.128 kg of dry matter (DM) for each kilogram of WG produced. This waste production has an emission capacity of approximately 4x10-4 kg N2O/kg WG in the first post-weaning week. Considering that N2O has a global warming potential almost 300 times higher in retaining heat than CO2, each 1 kg of piglet produced can emit about 0.129 kg of CO2 equivalent from the N2O produced. According to the number of piglets evaluated in this study, the total emission can reach 1.85 tons of CO2 equivalent in the first post-weaning week alone.

Downloads

Download data is not yet available.

References

ABPA. Associação Brasileira de Proteína Animal – Anuário. 2021. Available< https://abpa-br.org/wp- content/uploads/2021/04/ABPA_Relatorio_anual_2021_web.pdf>. Acessado em: 12 de Jan. de 2022.

APHA. American Public Health Association. Standard methods for examination of water and wastewater. 21th ed. Washington: American Water Works Association.1.368, 2005.

BELL, M. J.; HINTON, N. J.; CLOY, J. M.; TOPP, C. F. E.; REES, R. M.; WILLIAMS, J. R.; MISSSELBROOK, T. H.; CHADWICK, D. R. How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, v. 264, p. 81-93, 2016.

AITA, C.; GONZATTO, R.; MIOLA, E. C. C.; SANTOS, D. B.; ROCHETTE, P.; ANGERS, D. A.; CHANTIGNY, M. H.; PUJOL, S. B.; GIACOMINI, D. A. GIACOMINI, S. J. Injection of dicyandiamide treated pig slurry reduced ammonia volatilization without enhancing soil nitrous oxide emissions from no till corn in Southern Brazil. Journal of Environmental Quality, v. 43, n. 3, p. 789-800, 2014.

AITA, C.; CHANTIGNY, M. H.; GONZATTO, R.; MIOLA, E. C. C.; ROCHETTE, P.; PUJOL, S. B.; DOS SANTOS, D. B.; GIACOMINI, D. A.; GIACOMINI, S. J.; Winter-Season Gaseous Nitrogen Emissions in Subtropical Climate: Impacts of Pig Slurry Injection and Nitrification Inhibitor. Journal of Environmental Quality v. 48, n. 5, p. 1414-1426, 2019. doi: 10.2134/jeq2018.04.0137.

ANDRETTA, I.; HAUSCHILD, L.; KIPPER, M.; PIRES, P. G. S.; POMAR, C. Environmental impacts of precision feeding programs applied in pig production. Animal, v. 12, n. 9, p. 1990-1998, 2018.

BELL, M. J. et al. How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in Scottish farmland? Geoderma, v. 264, p. 81-93, 2016.

CARDOSO, A. S.; JUNQUEIRA, J. B.; REIS, R. A.; RUGGIERI, A. C. How do greenhouse gas emissions vary with biofertilizer type and soil temperature and moisture in a tropical grassland? Pedosphere, v. 30, n. 5, p. 607-617, 2020.

CHEN, X.; XU, J.; REN, E.; SU, Y.; ZHU, W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe, v. 49, p. 30-40, 2018.

CHERUBINI, E.; ZANGHELINI, G. M.; TAVARES, J. M. R.; BELETTINI, F.; SOARES, S. R. The finishing stage in swine production: influences of feed composition on carbon footprint. Environment, Development and Sustainability, v. 17, n. 6, p. 1313-1328, 2015.

DE ALMEIDA, R. F.; NAVES, E. R.; SILVEIRA, C. H.; WENDLING, B. Emissão de óxido nitroso em solos com diferentes usos e manejos: Uma revisão. Revista em Agronegócio e Meio Ambiente, v. 8, n. 2, p. 441-461, 2015.

GARCÍA-GUDIÑO, J.; NTR MONTEIRO, A.; ESPAGNOL, S.; BLANCO-PENEDO, I.; GARCIA-LAUNAY, F. Life cycle assessment of Iberian traditional pig production system in Spain. Sustainability, v. 12, n. 2, p. 627, 2020.

GUTIERREZ, M. D. R. V.; DA SILVA, A. L.; FLORES, M. P.; CASTANEDA, F. E. M.; CAMPOS, A. R. M.; GARDEA, J. M.; TENORIO, G. G. Life cycle assessment of pig production-a case study in mexican farm. Economic and Social Development: Book of Proceedings, p. 734-741, 2018.

JAYARAMAN, BALACHANDAR.; NYACHOTI, CHARLES M. Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, v. 3, n. 3, p. 205-211, 2017.

LO VERSO, L.; TALBOT, G.; MORISSETTE, B.; GUAY, F.; MATTE, J JACQUES.; FAZENDEIRO, C.; GONG, J.; WANG, Q.; BISSONNETTE, N.; BEAULIEU, M. L. The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. Journal of Animal Science, v. 98, n. 8, 2020.

OLIVEIRA, P.; AZENHA, M.; RODRIGUES, P.; ALVES, T.; LEMES, A.; PEDROSO, A. D. F. Emissão de óxido nitroso em pastagens tropicais de sistemas de produção de bovinos de corte. Embrapa Pecuária Sudeste-Capítulo em livro técnico (INFOTECA-E), 2020. Available < https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1131450>. Acessado em: 20 de Jan. de 2022.

PIETRAMALE, R. T. R.; CALDARA, F. R.; BARBOSA, D. K.; DA ROSA, C. O.; VANZELA, M.; PÁDUA, A. B.; RUVIARO, C. F. How much the reproductive losses of sows can be impacting the carbon footprint in swine production? Livestock Science, v. 250, p. 104594, 2021.

PIÑEIRO, C.; MORALES, J.; RODRÍGUEZ, M.; APARICIO, M.; MANZANILLA, E. G.; KOKETSU, Y. Big (pig) data and the internet of the swine things: a new paradigm in the industry. Animal frontiers, v. 9, n. 2, p. 6-15, 2019.

RECKMANN, K.; TRAULSEN, I.; KRIETER, J. Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livestock Science, v. 157, n. 2-3, p. 586-596, 2013.

RIGOLOT, C.; ESPAGNOL, S.; POMAR, C.; DOURMAD, J. Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: animal excretion and enteric CH4, effect of feeding and performance. Animal, p. 1401- 1412, 2010.

RIGOLOT, C.; ESPAGNOL, S.; ROBIN, P.; HASSOUNA, M.; BÉLINE, F.; PAILLAT, J. M.; DOURMAD, J. Y. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices. Animal, p. 1413- 1424, 2010.

ROCHA, L. O.; SILVA, J. L.; RODRIGUES, C. P. F.; MASCARENHAS, A. G.; NUNES, R. C. Glicerina Bruta nas rações para leitões na fase de creche. Ciência Animal Brasileira, p. 51-59, v. 17, n.1, 2016.

ROSTAGNO, H.S.; ALBINO, L.F.T.; HANNAS, M. L. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 4.ed. Viçosa: UFV, 488p, 2017.

RUVIARO, C. F.; DE LEIS, C. M.; FLORINDO, T. J.; DE MEDEIROS FLORINDO, G. I. B.; DA COSTA, J. S.; TANG, W. Z.; SOARES, S. R. Life cycle cost analysis of dairy production systems in southern brazil. Science of The Total Environment, v. 741, p. 140273, 2020.

SHAKOOR, A.; SHAKOOR, S.; REHMAN, A.; ASHRAF, F.; ABDULLAH, M.; SHAHZAD, S. M.; ALTAF, M. A. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production, v. 278, p. 124019, 2021.

SILVA, D. J; QUEIROZ, A. C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa, MG: Editora Universitária, p.166, 2006.

TULLBERG, J.; ANTILLE, D. L.; BLUETT, C.; EBERHARD, J.; SCHEER, C. Controlled traffic farming effects on soil emissions of nitrous oxide and methane. Soil and Tillage Research, v. 176, p. 18-25, 2018.

VALENTIM, J. K.; MENDES, J. P.; CALDARA, F. R.; PIETRAMALE, R. T. R.; GARCIA, R. G. Meta-analysis of relationship between weaning age and daily weight gain of piglets in the farrowing and nursery phases. South African Journal of Animal Science, v. 51, n. 3, p. 332-338, 2021.

WANG, M.; WANG, L.; TAN, X.; WANG, L.; XIONG, X.; WANG, Y.; WANG, Q.; YANG, H.; YIN, Y. The developmental changes in intestinal epithelial cell ploriferation, differentiation, and shedding in weaning piglets. Animal Nutrition, v. 9, p. 214-222, 2022.

XIA, F.; MEI, K.; XU, Y.; ZHANG, C.; DAHLGREN, R. A.; ZHANG, M. Response of N2O emission to manure application in field trials of agricultural soils across the globe. Science of The Total Environment, v. 733, p. 139390, 2020.

XIONG, X.; TAN, B.; SONG, M.; JI, P.; KIM, K.; YIN, Y.; LIU, Y. Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in veterinary science, v. 6, p. 46, 2019.

ZHAI, H.; LUO, Y.; REN, W.; SCHYNS, G.; GUGGENBUHL, P. The effects of benzoic acid oils on growth performance, nutrients digestibility, and colonic microbiota in nursery pigs. Animal Feed Science and Technology, v. 262, p. 114426, 2020.

Downloads

Published

2022-10-04

How to Cite

Oliveira, J. D. de, Orrico, A. C. A., Pietramale, R. T. R., Rosa, C. O. da, Ruviaro, C. F., Leite, B. K. V., & Machado, J. F. (2022). What is the contribution of piglet waste in the first week after weaning to greenhouse gas emissions?. Engineering in Agriculture, 30(Contínua), 319–327. https://doi.org/10.13083/reveng.v30i1.13908

Issue

Section

Rural Buildings and Environment