REDES NEURAIS ARTIFICIAIS PARA ESTIMATIVA MENSAL DA EROSIVIDADE DA CHUVA NO ESTADO DE MINAS GERAIS
DOI:
https://doi.org/10.13083/reveng.v17i1.94Keywords:
Hidrologia, HidráulicaAbstract
Dada à necessidade de se conhecer os valores da erosividade da chuva para qualquer localidade, tendo em vista o planejamento de uso de práticas para controle da erosão, e considerando a escassez dessas informações, no presente trabalho teve-se por objetivo desenvolver redes neurais artificiais (RNAs) para a estimativa mensal da erosividade da chuva no Estado de Minas Gerais. Utilizaram-se dados de erosividade da chuva, latitude, longitude e altitude de 268 estações pluviométricas situadas no Estado de Minas Gerais e em seu entorno. Foram treinadas 48 RNAs, considerando-se os índices de erosividade EI30 e KE>25 e duas metodologias de obtenção da energia cinética da precipitação. Na avaliação dos resultados obtidos com as RNAs desenvolvidas, utilizaram-se o coeficiente de determinação e o índice de confiança. A análise dos resultados possibilitou que se verificasse que as RNAs desenvolvidas são eficientes para estimativa mensal da erosividade da chuva, constituindo alternativa viável para a obtenção desses valores, para qualquer localidade do Estado de Minas Gerais.Downloads
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
The author(s) authorize(s) the publication of the text in the journal;
The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
From submission, the author is fully conceding the paper's patrimonial rights to the publication, but retaining the owner of its moral rights (authorship and paper's identification) according to Creative Commons Attribution-Noncommercial.